Java知识巩固(十二)
I/O
JavaIO流了解吗?
IO 即 Input/Output
,输入和输出。数据输入到计算机内存的过程即输入,反之输出到外部存储(比如数据库,文件,远程主机)的过程即输出。数据传输过程类似于水流,因此称为 IO 流。IO 流在 Java 中分为输入流和输出流,而根据数据的处理方式又分为字节流和字符流。
Java IO 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。
InputStream
/Reader
: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。OutputStream
/Writer
: 所有输出流的基类,前者是字节输出流,后者是字符输出流。
I/O流为什么要分为字节流和字符流呢?
个人认为主要有两点原因:
- 字符流是由 Java 虚拟机将字节转换得到的,这个过程还算是比较耗时;
- 如果我们不知道编码类型的话,使用字节流的过程中很容易出现乱码问题。
JavaIO中的设计模式有哪些?
装饰器模式
装饰器(Decorator)模式 可以在不改变原有对象的情况下拓展其功能。
装饰器模式通过组合替代继承来扩展原始类的功能,在一些继承关系比较复杂的场景(IO 这一场景各种类的继承关系就比较复杂)更加实用。
对于字节流来说, FilterInputStream
(对应输入流)和FilterOutputStream
(对应输出流)是装饰器模式的核心,分别用于增强 InputStream
和OutputStream
子类对象的功能。
我们常见的BufferedInputStream
(字节缓冲输入流)、DataInputStream
等等都是FilterInputStream
的子类,BufferedOutputStream
(字节缓冲输出流)、DataOutputStream
等等都是FilterOutputStream
的子类。
举个例子,我们可以通过 BufferedInputStream
(字节缓冲输入流)来增强 FileInputStream
的功能。
BufferedInputStream
构造函数如下:
public BufferedInputStream(InputStream in) {
this(in, DEFAULT_BUFFER_SIZE);
}
public BufferedInputStream(InputStream in, int size) {
super(in);
if (size <= 0) {
throw new IllegalArgumentException("Buffer size <= 0");
}
buf = new byte[size];
}
可以看出,BufferedInputStream
的构造函数其中的一个参数就是 InputStream
。
BufferedInputStream
代码示例:
try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("input.txt"))) {
int content;
long skip = bis.skip(2);
while ((content = bis.read()) != -1) {
System.out.print((char) content);
}
} catch (IOException e) {
e.printStackTrace();
}
这个时候,你可以会想了:为啥我们直接不弄一个BufferedFileInputStream
(字符缓冲文件输入流)呢?
BufferedFileInputStream bfis = new BufferedFileInputStream("input.txt");
如果 InputStream
的子类比较少的话,这样做是没问题的。不过, InputStream
的子类实在太多,继承关系也太复杂了。如果我们为每一个子类都定制一个对应的缓冲输入流,那岂不是太麻烦了。
如果你对 IO 流比较熟悉的话,你会发现ZipInputStream
和ZipOutputStream
还可以分别增强 BufferedInputStream
和 BufferedOutputStream
的能力。
BufferedInputStream bis = new BufferedInputStream(new FileInputStream(fileName));
ZipInputStream zis = new ZipInputStream(bis);
BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(fileName));
ZipOutputStream zipOut = new ZipOutputStream(bos);
ZipInputStream
和ZipOutputStream
分别继承自InflaterInputStream
和DeflaterOutputStream
。
public
class InflaterInputStream extends FilterInputStream {
}
public
class DeflaterOutputStream extends FilterOutputStream {
}
这也是装饰器模式很重要的一个特征,那就是可以对原始类嵌套使用多个装饰器。
为了实现这一效果,装饰器类需要跟原始类继承相同的抽象类或者实现相同的接口。上面介绍到的这些 IO 相关的装饰类和原始类共同的父类是 InputStream
和OutputStream
。
对于字符流来说,BufferedReader
可以用来增加 Reader
(字符输入流)子类的功能,BufferedWriter
可以用来增加 Writer
(字符输出流)子类的功能。
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName), "UTF-8"));
IO 流中的装饰器模式应用的例子实在是太多了,不需要特意记忆,完全没必要哈!搞清了装饰器模式的核心之后,你在使用的时候自然就会知道哪些地方运用到了装饰器模式。
适配器模式
适配器(Adapter Pattern)模式 主要用于接口互不兼容的类的协调工作,你可以将其联想到我们日常经常使用的电源适配器。
适配器模式中存在被适配的对象或者类称为 适配者(Adaptee) ,作用于适配者的对象或者类称为适配器(Adapter) 。适配器分为对象适配器和类适配器。类适配器使用继承关系来实现,对象适配器使用组合关系来实现。
IO 流中的字符流和字节流的接口不同,它们之间可以协调工作就是基于适配器模式来做的,更准确点来说是对象适配器。通过适配器,我们可以将字节流对象适配成一个字符流对象,这样我们可以直接通过字节流对象来读取或者写入字符数据。
InputStreamReader
和 OutputStreamWriter
就是两个适配器(Adapter), 同时,它们两个也是字节流和字符流之间的桥梁。InputStreamReader
使用 StreamDecoder
(流解码器)对字节进行解码,实现字节流到字符流的转换, OutputStreamWriter
使用StreamEncoder
(流编码器)对字符进行编码,实现字符流到字节流的转换。
InputStream
和 OutputStream
的子类是被适配者, InputStreamReader
和 OutputStreamWriter
是适配器。
// InputStreamReader 是适配器,FileInputStream 是被适配的类
InputStreamReader isr = new InputStreamReader(new FileInputStream(fileName), "UTF-8");
// BufferedReader 增强 InputStreamReader 的功能(装饰器模式)
BufferedReader bufferedReader = new BufferedReader(isr);
java.io.InputStreamReader
部分源码:
public class InputStreamReader extends Reader {
//用于解码的对象
private final StreamDecoder sd;
public InputStreamReader(InputStream in) {
super(in);
try {
// 获取 StreamDecoder 对象
sd = StreamDecoder.forInputStreamReader(in, this, (String)null);
} catch (UnsupportedEncodingException e) {
throw new Error(e);
}
}
// 使用 StreamDecoder 对象做具体的读取工作
public int read() throws IOException {
return sd.read();
}
}
java.io.OutputStreamWriter
部分源码:
public class OutputStreamWriter extends Writer {
// 用于编码的对象
private final StreamEncoder se;
public OutputStreamWriter(OutputStream out) {
super(out);
try {
// 获取 StreamEncoder 对象
se = StreamEncoder.forOutputStreamWriter(out, this, (String)null);
} catch (UnsupportedEncodingException e) {
throw new Error(e);
}
}
// 使用 StreamEncoder 对象做具体的写入工作
public void write(int c) throws IOException {
se.write(c);
}
}
适配器模式和装饰器模式有什么区别呢?
装饰器模式 更侧重于动态地增强原始类的功能,装饰器类需要跟原始类继承相同的抽象类或者实现相同的接口。并且,装饰器模式支持对原始类嵌套使用多个装饰器。
适配器模式 更侧重于让接口不兼容而不能交互的类可以一起工作,当我们调用适配器对应的方法时,适配器内部会调用适配者类或者和适配类相关的类的方法,这个过程透明的。就比如说 StreamDecoder
(流解码器)和StreamEncoder
(流编码器)就是分别基于 InputStream
和 OutputStream
来获取 FileChannel
对象并调用对应的 read
方法和 write
方法进行字节数据的读取和写入。
StreamDecoder(InputStream in, Object lock, CharsetDecoder dec) {
// 省略大部分代码
// 根据 InputStream 对象获取 FileChannel 对象
ch = getChannel((FileInputStream)in);
}
适配器和适配者两者不需要继承相同的抽象类或者实现相同的接口。
另外,FutureTask
类使用了适配器模式,Executors
的内部类 RunnableAdapter
实现属于适配器,用于将 Runnable
适配成 Callable
。
FutureTask
参数包含 Runnable
的一个构造方法:
public FutureTask(Runnable runnable, V result) {
// 调用 Executors 类的 callable 方法
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
Executors
中对应的方法和适配器:
// 实际调用的是 Executors 的内部类 RunnableAdapter 的构造方法
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
// 适配器
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
工厂模式
工厂模式用于创建对象,NIO 中大量用到了工厂模式,比如 Files
类的 newInputStream
方法用于创建 InputStream
对象(静态工厂)、 Paths
类的 get
方法创建 Path
对象(静态工厂)、ZipFileSystem
类(sun.nio
包下的类,属于 java.nio
相关的一些内部实现)的 getPath
的方法创建 Path
对象(简单工厂)。
InputStream is = Files.newInputStream(Paths.get(generatorLogoPath))
观察者模式
NIO 中的文件目录监听服务使用到了观察者模式。
NIO 中的文件目录监听服务基于 WatchService
接口和 Watchable
接口。WatchService
属于观察者,Watchable
属于被观察者。
Watchable
接口定义了一个用于将对象注册到 WatchService
(监控服务) 并绑定监听事件的方法 register
。
public interface Path
extends Comparable<Path>, Iterable<Path>, Watchable{
}
public interface Watchable {
WatchKey register(WatchService watcher,
WatchEvent.Kind<?>[] events,
WatchEvent.Modifier... modifiers)
throws IOException;
}
WatchService
用于监听文件目录的变化,同一个 WatchService
对象能够监听多个文件目录。
// 创建 WatchService 对象
WatchService watchService = FileSystems.getDefault().newWatchService();
// 初始化一个被监控文件夹的 Path 类:
Path path = Paths.get("workingDirectory");
// 将这个 path 对象注册到 WatchService(监控服务) 中去
WatchKey watchKey = path.register(
watchService, StandardWatchEventKinds...);
Path
类 register
方法的第二个参数 events
(需要监听的事件)为可变长参数,也就是说我们可以同时监听多种事件。
WatchKey register(WatchService watcher,
WatchEvent.Kind<?>... events)
throws IOException;
常用的监听事件有 3 种:
StandardWatchEventKinds.ENTRY_CREATE
:文件创建。StandardWatchEventKinds.ENTRY_DELETE
: 文件删除。StandardWatchEventKinds.ENTRY_MODIFY
: 文件修改。
register
方法返回 WatchKey
对象,通过WatchKey
对象可以获取事件的具体信息比如文件目录下是创建、删除还是修改了文件、创建、删除或者修改的文件的具体名称是什么。
WatchKey key;
while ((key = watchService.take()) != null) {
for (WatchEvent<?> event : key.pollEvents()) {
// 可以调用 WatchEvent 对象的方法做一些事情比如输出事件的具体上下文信息
}
key.reset();
}
WatchService
内部是通过一个 daemon thread(守护线程)采用定期轮询的方式来检测文件的变化,简化后的源码如下所示。
class PollingWatchService
extends AbstractWatchService
{
// 定义一个 daemon thread(守护线程)轮询检测文件变化
private final ScheduledExecutorService scheduledExecutor;
PollingWatchService() {
scheduledExecutor = Executors
.newSingleThreadScheduledExecutor(new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}});
}
void enable(Set<? extends WatchEvent.Kind<?>> events, long period) {
synchronized (this) {
// 更新监听事件
this.events = events;
// 开启定期轮询
Runnable thunk = new Runnable() { public void run() { poll(); }};
this.poller = scheduledExecutor
.scheduleAtFixedRate(thunk, period, period, TimeUnit.SECONDS);
}
}
}
BIO、NIO和AIO的区别?
何为I/O?
I/O(Input/Output) 即输入/输出 。
我们先从计算机结构的角度来解读一下 I/O。
根据冯.诺依曼结构,计算机结构分为 5 大部分:运算器、控制器、存储器、输入设备、输出设备。
输入设备(比如键盘)和输出设备(比如显示器)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。
输入设备向计算机输入数据,输出设备接收计算机输出的数据。
从计算机结构的视角来看的话, I/O 描述了计算机系统与外部设备之间通信的过程。
我们再先从应用程序的角度来解读一下 I/O。
根据大学里学到的操作系统相关的知识:为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 用户空间(User space) 和 内核空间(Kernel space ) 。
像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。
并且,用户空间的程序不能直接访问内核空间。
当想要执行 IO 操作时,由于没有执行这些操作的权限,只能发起系统调用请求操作系统帮忙完成。
因此,用户进程想要执行 IO 操作的话,必须通过 系统调用 来间接访问内核空间
我们在平常开发过程中接触最多的就是 磁盘 IO(读写文件) 和 网络 IO(网络请求和响应)。
从应用程序的视角来看的话,我们的应用程序对操作系统的内核发起 IO 调用(系统调用),操作系统负责的内核执行具体的 IO 操作。也就是说,我们的应用程序实际上只是发起了 IO 操作的调用而已,具体 IO 的执行是由操作系统的内核来完成的。
当应用程序发起 I/O 调用后,会经历两个步骤:
- 内核等待 I/O 设备准备好数据
- 内核将数据从内核空间拷贝到用户空间。
有哪些常见的IO模型?
UNIX 系统下, IO 模型一共有 5 种:同步阻塞 I/O、同步非阻塞 I/O、I/O 多路复用、信号驱动 I/O 和异步 I/O。
这也是我们经常提到的 5 种 IO 模型。
Java中3重常见IO模型
BIO 属于同步阻塞 IO 模型 。
同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到内核把数据拷贝到用户空间。
在客户端连接数量不高的情况下,是没问题的。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
NIO (Non-blocking/New I/O)
Java 中的 NIO 于 Java 1.4 中引入,对应 java.nio
包,提供了 Channel
, Selector
,Buffer
等抽象。NIO 中的 N 可以理解为 Non-blocking,不单纯是 New。它是支持面向缓冲的,基于通道的 I/O 操作方法。 对于高负载、高并发的(网络)应用,应使用 NIO 。
Java 中的 NIO 可以看作是 I/O 多路复用模型。也有很多人认为,Java 中的 NIO 属于同步非阻塞 IO 模型。
跟着我的思路往下看看,相信你会得到答案!
我们先来看看 同步非阻塞 IO 模型。
同步非阻塞 IO 模型中,应用程序会一直发起 read 调用,等待数据从内核空间拷贝到用户空间的这段时间里,线程依然是阻塞的,直到在内核把数据拷贝到用户空间。
相比于同步阻塞 IO 模型,同步非阻塞 IO 模型确实有了很大改进。通过轮询操作,避免了一直阻塞。
但是,这种 IO 模型同样存在问题:应用程序不断进行 I/O 系统调用轮询数据是否已经准备好的过程是十分消耗 CPU 资源的。
这个时候,I/O 多路复用模型 就上场了。
IO 多路复用模型中,线程首先发起 select 调用,询问内核数据是否准备就绪,等内核把数据准备好了,用户线程再发起 read 调用。read 调用的过程(数据从内核空间 -> 用户空间)还是阻塞的。
目前支持 IO 多路复用的系统调用,有 select,epoll 等等。select 系统调用,目前几乎在所有的操作系统上都有支持。
- select 调用:内核提供的系统调用,它支持一次查询多个系统调用的可用状态。几乎所有的操作系统都支持。
- epoll 调用:linux 2.6 内核,属于 select 调用的增强版本,优化了 IO 的执行效率。
IO 多路复用模型,通过减少无效的系统调用,减少了对 CPU 资源的消耗。
Java 中的 NIO ,有一个非常重要的选择器 ( Selector ) 的概念,也可以被称为 多路复用器。通过它,只需要一个线程便可以管理多个客户端连接。当客户端数据到了之后,才会为其服务。
AIO(AsynchronousI/O)
AIO 也就是 NIO 2。Java 7 中引入了 NIO 的改进版 NIO 2,它是异步 IO 模型。
异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。
目前来说 AIO 的应用还不是很广泛。Netty 之前也尝试使用过 AIO,不过又放弃了。这是因为,Netty 使用了 AIO 之后,在 Linux 系统上的性能并没有多少提升。
最后,来一张图,简单总结一下 Java 中的 BIO、NIO、AIO。
I/O
何为 I/O?
I/O(Input/Output) 即输入/输出 。
我们先从计算机结构的角度来解读一下 I/O。
根据冯.诺依曼结构,计算机结构分为 5 大部分:运算器、控制器、存储器、输入设备、输出设备。
冯诺依曼体系结构
输入设备(比如键盘)和输出设备(比如显示器)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。
输入设备向计算机输入数据,输出设备接收计算机输出的数据。
从计算机结构的视角来看的话, I/O 描述了计算机系统与外部设备之间通信的过程。
我们再先从应用程序的角度来解读一下 I/O。
根据大学里学到的操作系统相关的知识:为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 用户空间(User space) 和 内核空间(Kernel space ) 。
像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。
并且,用户空间的程序不能直接访问内核空间。
当想要执行 IO 操作时,由于没有执行这些操作的权限,只能发起系统调用请求操作系统帮忙完成。
因此,用户进程想要执行 IO 操作的话,必须通过 系统调用 来间接访问内核空间
我们在平常开发过程中接触最多的就是 磁盘 IO(读写文件) 和 网络 IO(网络请求和响应)。
从应用程序的视角来看的话,我们的应用程序对操作系统的内核发起 IO 调用(系统调用),操作系统负责的内核执行具体的 IO 操作。也就是说,我们的应用程序实际上只是发起了 IO 操作的调用而已,具体 IO 的执行是由操作系统的内核来完成的。
当应用程序发起 I/O 调用后,会经历两个步骤:
- 内核等待 I/O 设备准备好数据
- 内核将数据从内核空间拷贝到用户空间。
有哪些常见的 IO 模型?
UNIX 系统下, IO 模型一共有 5 种:同步阻塞 I/O、同步非阻塞 I/O、I/O 多路复用、信号驱动 I/O 和异步 I/O。
这也是我们经常提到的 5 种 IO 模型。
Java 中 3 种常见 IO 模型
BIO (Blocking I/O)
BIO 属于同步阻塞 IO 模型 。
同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到内核把数据拷贝到用户空间。
图源:《深入拆解Tomcat & Jetty》
在客户端连接数量不高的情况下,是没问题的。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
NIO (Non-blocking/New I/O)
Java 中的 NIO 于 Java 1.4 中引入,对应 java.nio
包,提供了 Channel
, Selector
,Buffer
等抽象。NIO 中的 N 可以理解为 Non-blocking,不单纯是 New。它是支持面向缓冲的,基于通道的 I/O 操作方法。 对于高负载、高并发的(网络)应用,应使用 NIO 。
Java 中的 NIO 可以看作是 I/O 多路复用模型。也有很多人认为,Java 中的 NIO 属于同步非阻塞 IO 模型。
跟着我的思路往下看看,相信你会得到答案!
我们先来看看 同步非阻塞 IO 模型。
图源:《深入拆解Tomcat & Jetty》
同步非阻塞 IO 模型中,应用程序会一直发起 read 调用,等待数据从内核空间拷贝到用户空间的这段时间里,线程依然是阻塞的,直到在内核把数据拷贝到用户空间。
相比于同步阻塞 IO 模型,同步非阻塞 IO 模型确实有了很大改进。通过轮询操作,避免了一直阻塞。
但是,这种 IO 模型同样存在问题:应用程序不断进行 I/O 系统调用轮询数据是否已经准备好的过程是十分消耗 CPU 资源的。
这个时候,I/O 多路复用模型 就上场了。
IO 多路复用模型中,线程首先发起 select 调用,询问内核数据是否准备就绪,等内核把数据准备好了,用户线程再发起 read 调用。read 调用的过程(数据从内核空间 -> 用户空间)还是阻塞的。
目前支持 IO 多路复用的系统调用,有 select,epoll 等等。select 系统调用,目前几乎在所有的操作系统上都有支持。
- select 调用:内核提供的系统调用,它支持一次查询多个系统调用的可用状态。几乎所有的操作系统都支持。
- epoll 调用:linux 2.6 内核,属于 select 调用的增强版本,优化了 IO 的执行效率。
IO 多路复用模型,通过减少无效的系统调用,减少了对 CPU 资源的消耗。
Java 中的 NIO ,有一个非常重要的选择器 ( Selector ) 的概念,也可以被称为 多路复用器。通过它,只需要一个线程便可以管理多个客户端连接。当客户端数据到了之后,才会为其服务。
Buffer、Channel和Selector三者之间的关系
AIO (Asynchronous I/O)
AIO 也就是 NIO 2。Java 7 中引入了 NIO 的改进版 NIO 2,它是异步 IO 模型。
异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。
目前来说 AIO 的应用还不是很广泛。Netty 之前也尝试使用过 AIO,不过又放弃了。这是因为,Netty 使用了 AIO 之后,在 Linux 系统上的性能并没有多少提升。