力扣题86~90
题86(中等):
python代码
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def partition(self, head: Optional[ListNode], x: int) -> Optional[ListNode]:
#分组,分两丢
small_node=ListNode()
high_node=ListNode()
p_small=small_node
p_high=high_node
p_h=head
while p_h!=None:
#如果小于,应该放到smaller
print(p_h.val)
if p_h.val<x:
p_small.next=p_h
p_small=p_small.next
p_h=p_h.next
else:
p_high.next=p_h
p_high=p_high.next
p_h=p_h.next
p_small.next=high_node.next
p_high.next=None
head=small_node.next
return head
题87(困难):
python代码:
class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
if len(s1) != len(s2) or sorted(s1) != sorted(s2):
return False
n = len(s1)
dp = [[[False] * (n + 1) for _ in range(n)] for _ in range(n)]
# 初始化长度为1的子串
for i in range(n):
for j in range(n):
dp[i][j][1] = s1[i] == s2[j]
# 遍历所有可能的子串长度
for k in range(2, n + 1):
for i in range(n - k + 1):
for j in range(n - k + 1):
for p in range(1, k):
# 不交换的情况
if dp[i][j][p] and dp[i + p][j + p][k - p]:
dp[i][j][k] = True
break
# 交换的情况
if dp[i][j + k - p][p] and dp[i + p][j][k - p]:
dp[i][j][k] = True
break
return dp[0][0][n]
题88(简单):
python代码:
class Solution:
def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
"""
Do not return anything, modify nums1 in-place instead.
"""
for i in range(m,m+n):
nums1[i]=nums2[i-m]
nums1.sort()
题89(中等):
分析:
找规律00 01 11 10-----> 000 001 011 010(前4+0) / 110 111 101 100 (后4加1并倒序排列)
class Solution:
def grayCode(self, n: int) -> List[int]:
def call_back(n,bin_list):
if n == 1:
bin_list.extend(['0', '1'])
return bin_list
bin_list=call_back(n - 1,bin_list)
new = ['1' + i for i in bin_list][::-1]
bin_list=['0' + i for i in bin_list]
print(new)
bin_list.extend(new)
return bin_list
bin_list=call_back(n,[])
return [int(i, 2) for i in bin_list]
题90(中等):
python代码:
class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
n_list=sorted(nums)
res=[[]]
def call_back(nums,k,now_list):
#判断出递归条件,当
if nums==[]:
return
for i in range(0,len(nums)):
if i>0 and nums[i]==nums[i-1]:
continue
#加一个i处的值
new_now=now_list.copy()
new_now.append(nums[i])
#把这个去了
new_num=nums[i+1:]
res.append(new_now)
call_back(new_num,k+1,new_now)
call_back(n_list,0,[])
return res