当前位置: 首页 > article >正文

PyTorch nn.Conv2d 空洞卷积


torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔

dilation controls the spacing between the kernel points

  • 当 dilation=1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积
  • 当 dilation>1 时, 表示空洞卷积(dilated convolution)

动画演示:
dilation

手动计算

以 2*2 的卷积核和 dilation=2 为例, 等效卷积核的大小为:

Step-1

左上角区域卷积: 1 * 2 + 3 * 0 + 3 * 1 + 1 * 3 = 8, 卷积核中的空白间隔不参与运算, 当然也可以将其置为 0, 等效为 3 * 3 的卷积运算

Step-2

Step-3

Step-4

结果:

整体


使用 PyTorch 计算

import torch
from torch import nn

data = [
    [1, 2, 3, 0],
    [0, 1, 2, 3],
    [3, 0, 1, 2],
    [2, 3, 0, 1]
]
# 单通道 4*4 图片
# minibatch=1
inp = torch.tensor(data).reshape(1, 1, 4, 4).to(torch.float32)

conv = nn.Conv2d(1, 1, kernel_size=2, dilation=2, bias=False)
conv.weight.data = torch.tensor(
    [[2, 0], [1, 3]]
).reshape(1, 1, 2, 2).to(torch.float32)

oup = conv(inp)
print(oup)

输出

tensor([[[[ 8., 10.],
          [ 2.,  8.]]]], grad_fn=<ConvolutionBackward0>)

空洞卷积可以扩大感受野, 2*2 的卷积核, dilation 参数设为 2, 可以提取特征图中 3*3 的内容, 却只有 2*2 的卷积运算量

空洞卷积会丢失局部信息


http://www.kler.cn/a/372025.html

相关文章:

  • docker占用磁盘过多问题
  • 功能测试:方法、流程与工具介绍
  • 第三十三篇:TCP协议如何避免/减少网络拥塞,TCP系列八
  • leetcode57:插入区间
  • TIFS-2024 FIRe2:细粒度表示和重组在换衣行人重识别中的应用
  • ELK + Filebeat + Spring Boot:日志分析入门与实践(二)
  • Git 企业级开发模型
  • 深入理解所有权与借用——所有权模型的实用示例
  • QT 机器视觉 (3. 虚拟相机SDK、测试工具)
  • 【C语言】在线编译器——lightly
  • 什么是AdaBoost
  • EHOME视频平台EasyCVR私有化部署视频平台视频监控系统画面花屏、马赛克、拖影问题快速解决方法
  • WebSocket与Socket
  • sudo apt install jupyter-notebook安装notebook失败E: Aborting install.
  • 计算机视觉-霍夫变换直线检测实验报告
  • JMeter安装
  • Linux云计算 |【第五阶段】CLOUD-DAY4
  • 基于阿里云服务的移动应用日志管理方案—日志的上传、下载、存档等
  • JS补原型链
  • h5小游戏5--杀死国王(附源码)
  • three.js 纹理(Texture)、深度纹理(DepthTexture)、视频纹理(VideoTexture)
  • Flutter主题最佳实践
  • 力扣1381:设计一个支持增量操作的栈
  • 【快速小项目】蛋糕商城首页展示
  • 大数据-193 Apache Tez - DAG 作业计算框架 核心解释 工作原理 配置集成
  • 力扣91~95题