当前位置: 首页 > article >正文

什么是SMO算法

SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时,传统的二次规划方法效率较低,而 SMO 算法通过分解问题,使得计算变得更加高效。

SVM 的二次规划问题回顾

支持向量机的优化问题本质上是一个 凸二次规划问题,其目标是找到最优的超平面,使得样本点的分类间隔最大。具体来说,SVM 的对偶问题形式为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i αmin21i=1Nj=1NαiαjyiyjK(xi,xj)i=1Nαi

s.t. ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ C \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C s.t.i=1Nαiyi=0,0αiC

其中:

  • α i \alpha_i αi 是拉格朗日乘子。
  • y i y_i yi 是样本点 x i x_i xi 的类别标签。
  • K ( x i , x j ) K(x_i, x_j) K(xi,xj) 是核函数,表示样本之间的相似性。
  • C C C 是惩罚参数。

这个问题涉及到对所有 N N N 个拉格朗日乘子 α \alpha α 进行优化,传统的优化算法如 内点法QP(Quadratic Programming) 方法在处理大规模问题时效率较低。

SMO 算法的基本思想

SMO 算法通过将原始的优化问题分解为多个 子问题 来求解,每次仅优化两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2,其余乘子保持不变。优化两个变量的子问题可以通过简单的解析方法快速求解,从而大大减少了计算的复杂度。

SMO算法的步骤:
  1. 选择两个拉格朗日乘子
    SMO算法每次选择两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 进行优化。选择这两个乘子的原则是,它们不满足 KKT条件,即当前的解不是最优的。

  2. 构建子优化问题
    假设所有其他拉格朗日乘子保持不变,SMO通过优化两个乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 来最小化目标函数。优化问题变成了一个关于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 的二次函数,且由于存在约束 ∑ i = 1 N α i y i = 0 \sum_{i=1}^{N} \alpha_i y_i = 0 i=1Nαiyi=0,因此这两个变量之间有一个线性关系。

  3. 更新两个拉格朗日乘子的值
    SMO 通过解析的方法计算出新的 α 1 \alpha_1 α1 α 2 \alpha_2 α2 值,并根据边界 [ 0 , C ] [0, C] [0,C] 进行截断。计算后的两个新的乘子必须满足所有约束条件。

  4. 更新偏置项 b b b
    每次更新两个拉格朗日乘子后,SMO 需要更新支持向量机中的偏置项 b b b,以保证分类超平面保持正确。

  5. 迭代重复
    SMO 通过不断重复选择一对拉格朗日乘子进行优化,直到所有的乘子都满足 KKT 条件,即算法收敛。

SMO 算法的核心优化过程

SMO 算法的核心在于,它将每次优化问题简化为一个涉及两个变量的二次规划问题。假设我们要优化 α 1 \alpha_1 α1 α 2 \alpha_2 α2,我们可以通过以下步骤来求解:

  1. 计算未约束解:根据优化目标函数,我们可以直接计算出未约束的 α 2 new, unc \alpha_2^{\text{new, unc}} α2new, unc,即不考虑任何约束时最优的 α 2 \alpha_2 α2 值。

α 2 new, unc = α 2 old + y 2 ⋅ E 1 − E 2 K 11 + K 22 − 2 K 12 \alpha_2^{\text{new, unc}} = \alpha_2^{\text{old}} + y_2 \cdot \frac{E_1 - E_2}{K_{11} + K_{22} - 2K_{12}} α2new, unc=α2old+y2K11+K222K12E1E2

其中 E 1 E_1 E1 E 2 E_2 E2 是预测误差, K 11 K_{11} K11 K 22 K_{22} K22 K 12 K_{12} K12 是核函数的值。

  1. α 2 \alpha_2 α2 进行截断:未约束的 α 2 \alpha_2 α2 值可能不满足约束 0 ≤ α 2 ≤ C 0 \leq \alpha_2 \leq C 0α2C,因此需要将其截断为一个满足约束条件的值。

  2. 更新 α 1 \alpha_1 α1:由于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 之间有线性约束关系,更新 α 2 \alpha_2 α2 后可以直接更新 α 1 \alpha_1 α1

  3. 更新偏置项 b b b:每次更新 α 1 \alpha_1 α1 α 2 \alpha_2 α2 后,需要更新偏置项 b b b,以保证分类超平面的正确性。

SMO 算法的优势

  1. 局部优化效率高:每次只需要优化两个变量,计算非常快。通过反复优化不同的拉格朗日乘子对,SMO 可以快速逼近最优解。

  2. 避免矩阵操作:传统的二次规划方法通常需要对大矩阵进行操作,而 SMO 通过只处理两个变量,避免了对整个矩阵的求解,减少了计算复杂度。

  3. 适用于大规模问题:SMO 算法能够很好地处理大规模的数据集,尤其是当样本数量很大时,传统方法难以处理的问题,SMO 也能有效求解。

SMO 算法的局限

  • 选择变量的策略:SMO 的效率在很大程度上取决于选择哪两个乘子来进行优化。如果选择策略不好,算法可能收敛较慢。
  • 对初始点敏感:SMO 对初始值的选择较为敏感,不同的初始值可能导致不同的收敛速度。

总结

SMO 是一种非常有效的算法,特别适合用于大规模支持向量机的训练。通过不断地优化两个拉格朗日乘子,它极大地简化了支持向量机的二次规划问题。由于每次只处理两个变量,SMO 避免了传统方法中的矩阵运算,因此能够处理较大的数据集并且计算速度很快。


http://www.kler.cn/a/375692.html

相关文章:

  • 数据库服务体系结构
  • SpringBoot错误码国际化
  • 使用Pydantic驾驭大模型
  • 职场沟通与行为
  • Golang Gin系列-2:搭建Gin 框架环境
  • 简明docker快速入门并实践方法
  • 聊一聊Elasticsearch的基本原理与形成机制
  • java毕业设计之教学资源库系统的设计与实现(springboot)
  • HTML 基础概念:什么是 HTML ? HTML 的构成 与 HTML 基本文档结构
  • 「C/C++」C++STL容器库 之 std::tuple 多变元组
  • JS中的正则表达式
  • 第三百零七节 Log4j教程 - Log4j日志格式、Log4j日志到文件
  • 保姆级教程 | 全流程免费:合并多份长宽不同的PDF成相同大小并进行瘦身
  • InnoDB存储引擎对MVCC实现
  • RK3568开发板Openwrt文件系统构建
  • 运维监控丨16条常用的Kafka看板监控配置与告警规则
  • 《机器学习与人类学习:比较、融合与未来展望》
  • CSP-J 和 CSP-S 自测
  • 【系统架构设计师】七、设计模式
  • 制作安装k8s需要的离线yum源
  • 4、在Linux上安装软件
  • Redis数据安全_持久化机制
  • 查看多个通道32bit音频pcm数据
  • ZYNQ RFSoC 的DAC如何做到从 0到Fs频段 信号输出
  • 关于 Golang Weekly
  • Information Theoretical Estimators (ITE) Toolbox的使用(MATLAB)