什么是SMO算法
SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时,传统的二次规划方法效率较低,而 SMO 算法通过分解问题,使得计算变得更加高效。
SVM 的二次规划问题回顾
支持向量机的优化问题本质上是一个 凸二次规划问题,其目标是找到最优的超平面,使得样本点的分类间隔最大。具体来说,SVM 的对偶问题形式为:
min
α
1
2
∑
i
=
1
N
∑
j
=
1
N
α
i
α
j
y
i
y
j
K
(
x
i
,
x
j
)
−
∑
i
=
1
N
α
i
\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i
αmin21i=1∑Nj=1∑NαiαjyiyjK(xi,xj)−i=1∑Nαi
s.t. ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ C \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C s.t.i=1∑Nαiyi=0,0≤αi≤C
其中:
- α i \alpha_i αi 是拉格朗日乘子。
- y i y_i yi 是样本点 x i x_i xi 的类别标签。
- K ( x i , x j ) K(x_i, x_j) K(xi,xj) 是核函数,表示样本之间的相似性。
- C C C 是惩罚参数。
这个问题涉及到对所有 N N N 个拉格朗日乘子 α \alpha α 进行优化,传统的优化算法如 内点法 或 QP(Quadratic Programming) 方法在处理大规模问题时效率较低。
SMO 算法的基本思想
SMO 算法通过将原始的优化问题分解为多个 子问题 来求解,每次仅优化两个拉格朗日乘子 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2,其余乘子保持不变。优化两个变量的子问题可以通过简单的解析方法快速求解,从而大大减少了计算的复杂度。
SMO算法的步骤:
-
选择两个拉格朗日乘子:
SMO算法每次选择两个拉格朗日乘子 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 进行优化。选择这两个乘子的原则是,它们不满足 KKT条件,即当前的解不是最优的。 -
构建子优化问题:
假设所有其他拉格朗日乘子保持不变,SMO通过优化两个乘子 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 来最小化目标函数。优化问题变成了一个关于 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 的二次函数,且由于存在约束 ∑ i = 1 N α i y i = 0 \sum_{i=1}^{N} \alpha_i y_i = 0 ∑i=1Nαiyi=0,因此这两个变量之间有一个线性关系。 -
更新两个拉格朗日乘子的值:
SMO 通过解析的方法计算出新的 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 值,并根据边界 [ 0 , C ] [0, C] [0,C] 进行截断。计算后的两个新的乘子必须满足所有约束条件。 -
更新偏置项 b b b:
每次更新两个拉格朗日乘子后,SMO 需要更新支持向量机中的偏置项 b b b,以保证分类超平面保持正确。 -
迭代重复:
SMO 通过不断重复选择一对拉格朗日乘子进行优化,直到所有的乘子都满足 KKT 条件,即算法收敛。
SMO 算法的核心优化过程
SMO 算法的核心在于,它将每次优化问题简化为一个涉及两个变量的二次规划问题。假设我们要优化 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2,我们可以通过以下步骤来求解:
- 计算未约束解:根据优化目标函数,我们可以直接计算出未约束的 α 2 new, unc \alpha_2^{\text{new, unc}} α2new, unc,即不考虑任何约束时最优的 α 2 \alpha_2 α2 值。
α 2 new, unc = α 2 old + y 2 ⋅ E 1 − E 2 K 11 + K 22 − 2 K 12 \alpha_2^{\text{new, unc}} = \alpha_2^{\text{old}} + y_2 \cdot \frac{E_1 - E_2}{K_{11} + K_{22} - 2K_{12}} α2new, unc=α2old+y2⋅K11+K22−2K12E1−E2
其中 E 1 E_1 E1 和 E 2 E_2 E2 是预测误差, K 11 K_{11} K11、 K 22 K_{22} K22 和 K 12 K_{12} K12 是核函数的值。
-
对 α 2 \alpha_2 α2 进行截断:未约束的 α 2 \alpha_2 α2 值可能不满足约束 0 ≤ α 2 ≤ C 0 \leq \alpha_2 \leq C 0≤α2≤C,因此需要将其截断为一个满足约束条件的值。
-
更新 α 1 \alpha_1 α1:由于 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 之间有线性约束关系,更新 α 2 \alpha_2 α2 后可以直接更新 α 1 \alpha_1 α1。
-
更新偏置项 b b b:每次更新 α 1 \alpha_1 α1 和 α 2 \alpha_2 α2 后,需要更新偏置项 b b b,以保证分类超平面的正确性。
SMO 算法的优势
-
局部优化效率高:每次只需要优化两个变量,计算非常快。通过反复优化不同的拉格朗日乘子对,SMO 可以快速逼近最优解。
-
避免矩阵操作:传统的二次规划方法通常需要对大矩阵进行操作,而 SMO 通过只处理两个变量,避免了对整个矩阵的求解,减少了计算复杂度。
-
适用于大规模问题:SMO 算法能够很好地处理大规模的数据集,尤其是当样本数量很大时,传统方法难以处理的问题,SMO 也能有效求解。
SMO 算法的局限
- 选择变量的策略:SMO 的效率在很大程度上取决于选择哪两个乘子来进行优化。如果选择策略不好,算法可能收敛较慢。
- 对初始点敏感:SMO 对初始值的选择较为敏感,不同的初始值可能导致不同的收敛速度。
总结
SMO 是一种非常有效的算法,特别适合用于大规模支持向量机的训练。通过不断地优化两个拉格朗日乘子,它极大地简化了支持向量机的二次规划问题。由于每次只处理两个变量,SMO 避免了传统方法中的矩阵运算,因此能够处理较大的数据集并且计算速度很快。