当前位置: 首页 > article >正文

3d点在立方体内(numpy,不使用for循环)

说明

判断一堆3d点哪些在一堆3d框内,与主流3d目标检测算法一样,立方体只有水平方向上的旋转,没有高度方向上的旋转,就是拍到BEV图像上是一个旋转的矩形

代码优势

基于numpy完成,直接判断一堆点和一堆3d框的包含关系,不使用for循环

算法思路

整体思路说白了其实也挺简单的,就是分两步,首先判断点是否在旋转矩形内(本人直接使用凸多边形),然后判断是否在高度范围内

针对numpy核心的代码思路是:在加和过程中True为1、False为0,因此同时满足三个条件加和应该为3。以此进行重叠的逻辑判断,最后判断一次取出满足全部条件的索引

工程细节

定义随机点
 lidar_points = np.random.randint(low=0, high=10, size=(10, 3), dtype='int')

定义旋转矩形

定义一个旋转矩形,输入的box为中心点坐标x、y,矩形宽高,和围绕中心点旋转角度

 def get_corners(box):  # 这里本人项目yaw [-pi/4, 3*pi/4),需要映射到[0, pi)
     # box = box.detach().cpu().numpy()
     x = box[0]
     y = box[1]
     w = box[2]
     l = box[3]
     yaw = box[4]
     if yaw < 0:  # 用来映射
         yaw = yaw + np.pi
 ​
     bev_corners = np.zeros((4, 2), dtype=np.float32)
     cos_yaw = np.cos(yaw)
     sin_yaw = np.sin(yaw)
 ​
     bev_corners[0, 0] = (w / 2) * cos_yaw - (l / 2) * sin_yaw + x
     bev_corners[0, 1] = (w / 2) * sin_yaw + (l / 2) * cos_yaw + y
     bev_corners[1, 0] = (l / 2) * sin_yaw + (w / 2) * cos_yaw + x
     bev_corners[1, 1] = (w / 2) * sin_yaw - (l / 2) * cos_yaw + y
     bev_corners[2, 0] = (-w / 2) * cos_yaw - (-l / 2) * sin_yaw + x
     bev_corners[2, 1] = (-w / 2) * sin_yaw + (-l / 2) * cos_yaw + y
     bev_corners[3, 0] = (-l / 2) * sin_yaw + (-w / 2) * cos_yaw + x
     bev_corners[3, 1] = (-w / 2) * sin_yaw - (-l / 2) * cos_yaw + y
     return bev_corners
 ​

定义空间3d立方体

首先定义旋转矩形,然后为旋转矩形在z轴上赋最大值和最小值,得到的结果就是空间3d的立方体,但是没有高度上的旋转

 def get_3dbox(boxes):
     boxes_3d = []
     for box in boxes:
         bev_corners = get_corners(box[:5])
         down = np.hstack(
             [bev_corners, box[5] * np.ones((bev_corners.shape[0], 1))])
         up = np.hstack(
             [bev_corners, box[6] * np.ones((bev_corners.shape[0], 1))])
         box_3d = np.vstack([down, up])
         boxes_3d.append(box_3d)
     return np.array(boxes_3d)
 boxes_3d = get_3dbox([[5, 4, 2, 3, 0, 1, 3], [3, 2, 6, 2, -10, 3, 8]])

点在旋转矩形内

就是判断点在凸多边形内,个人使用的是同侧法,或者叫叉乘法。最后就是判断点和四边形的四个顶点的叉乘是否在同一侧。

 def points_in_rotatingrectangles(lidar_points, boxes):
     boxes_shape = boxes.shape
     Pxy = lidar_points[:, :2].reshape(1, lidar_points.shape[0], 2)
     
     Axy = boxes[:, 0, :2].reshape(boxes_shape[0], 1, 2)
     Bxy = boxes[:, 1, :2].reshape(boxes_shape[0], 1, 2)
     Cxy = boxes[:, 2, :2].reshape(boxes_shape[0], 1, 2)
     Dxy = boxes[:, 3, :2].reshape(boxes_shape[0], 1, 2)
 ​
     cross1 = np.cross(Bxy - Axy, Pxy - Axy)
     cross2 = np.cross(Cxy - Bxy, Pxy - Bxy)
     cross3 = np.cross(Dxy - Cxy, Pxy - Cxy)
     cross4 = np.cross(Axy - Dxy, Pxy - Dxy)
     points_concat1 = np.concatenate([(cross1 > 0)[:, :, np.newaxis], (cross2 > 0)[:, :, np.newaxis],
                                     (cross3 > 0)[:, :, np.newaxis], (cross4 > 0)[:, :, np.newaxis]], axis=2)
     points_concat2 = np.concatenate([(cross1 < 0)[:, :, np.newaxis], (cross2 < 0)[:, :, np.newaxis],
                                     (cross3 < 0)[:, :, np.newaxis], (cross4 < 0)[:, :, np.newaxis]], axis=2)
 ​
     points_usability1 = points_concat1.sum(axis=2)
     points_usability2 = points_concat2.sum(axis=2)
     ww = np.concatenate([(points_usability1 == 4)[:, :, np.newaxis], (points_usability1 == 0)[:, :, np.newaxis],
                          (points_usability2 == 4)[:, :, np.newaxis], (points_usability2 == 0)[:, :, np.newaxis]], axis=2)
     mm = ww.sum(axis=2)
     return (mm > 1)[:, :, np.newaxis]

点在3d立方体内

首先不管高度轴判断水平点是否在旋转矩形内,然后判断点的高度是否在立方体内。

 def points_in_cubes(lidar_points, boxes):
     boxes_shape = boxes.shape
     Az = boxes[:, 0, 2]
     Ez = boxes[:, 4, 2]
     Pz = lidar_points[:, 2].reshape(1, -1)
     zmin = np.min([Az, Ez], axis=0).reshape(boxes_shape[0], -1)
     zmax = np.max([Az, Ez], axis=0).reshape(boxes_shape[0], -1)
     p_min_z = (Pz > zmin)[:, :, np.newaxis]
     p_max_z = (Pz < zmax)[:, :, np.newaxis]
     p_in_r = points_in_rotatingrectangles(lidar_points, boxes)
     ii = np.concatenate([p_in_r, p_min_z, p_max_z], axis=2).sum(axis=2)
     usability_sum = np.sum(ii == 3, axis=0)
     return usability_sum > 0

完整代码

 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
 '''
 @File    :   main.py
 @Time    :   2024/10/24 20:02:07
 @Author  :   xudh 
 @Version :   1.0
 @Desc    :   一群空间3d点在一群3d立方体内
 code is far away from bug with the animal protecting
     ┏┓   ┏┓
    ┏┛┻━━━┛┻┓
    ┃       ┃
    ┃   ━   ┃
    ┃ >   <  ┃
    ┃       ┃
    ┃    . ⌒ .. ┃
    ┃       ┃
    ┗━┓   ┏━┛
      ┃   ┃ Codes are far away from bugs with the animal protecting
      ┃   ┃ 神兽保佑,代码无bug
      ┃   ┃
      ┃   ┃
      ┃   ┃
      ┃   ┃
      ┃   ┗━━━┓
      ┃       ┣┓
      ┃       ┏┛
      ┗┓┓┏━┳┓┏┛
       ┃┫┫ ┃┫┫
       ┗┻┛ ┗┻┛
 '''
 ​
 ​
 import numpy as np
 ​
 ​
 def points_in_rotatingrectangles(lidar_points, boxes):
     boxes_shape = boxes.shape
     Pxy = lidar_points[:, :2].reshape(1, lidar_points.shape[0], 2)
     
     Axy = boxes[:, 0, :2].reshape(boxes_shape[0], 1, 2)
     Bxy = boxes[:, 1, :2].reshape(boxes_shape[0], 1, 2)
     Cxy = boxes[:, 2, :2].reshape(boxes_shape[0], 1, 2)
     Dxy = boxes[:, 3, :2].reshape(boxes_shape[0], 1, 2)
 ​
     cross1 = np.cross(Bxy - Axy, Pxy - Axy)
     cross2 = np.cross(Cxy - Bxy, Pxy - Bxy)
     cross3 = np.cross(Dxy - Cxy, Pxy - Cxy)
     cross4 = np.cross(Axy - Dxy, Pxy - Dxy)
     points_concat1 = np.concatenate([(cross1 > 0)[:, :, np.newaxis], (cross2 > 0)[:, :, np.newaxis],
                                     (cross3 > 0)[:, :, np.newaxis], (cross4 > 0)[:, :, np.newaxis]], axis=2)
     points_concat2 = np.concatenate([(cross1 < 0)[:, :, np.newaxis], (cross2 < 0)[:, :, np.newaxis],
                                     (cross3 < 0)[:, :, np.newaxis], (cross4 < 0)[:, :, np.newaxis]], axis=2)
 ​
     points_usability1 = points_concat1.sum(axis=2)
     points_usability2 = points_concat2.sum(axis=2)
     ww = np.concatenate([(points_usability1 == 4)[:, :, np.newaxis], (points_usability1 == 0)[:, :, np.newaxis],
                          (points_usability2 == 4)[:, :, np.newaxis], (points_usability2 == 0)[:, :, np.newaxis]], axis=2)
     mm = ww.sum(axis=2)
     return (mm > 1)[:, :, np.newaxis]
     
 ​
 def points_in_cubes(lidar_points, boxes):
     boxes_shape = boxes.shape
     Az = boxes[:, 0, 2]
     Ez = boxes[:, 4, 2]
     Pz = lidar_points[:, 2].reshape(1, -1)
     zmin = np.min([Az, Ez], axis=0).reshape(boxes_shape[0], -1)
     zmax = np.max([Az, Ez], axis=0).reshape(boxes_shape[0], -1)
     p_min_z = (Pz > zmin)[:, :, np.newaxis]
     p_max_z = (Pz < zmax)[:, :, np.newaxis]
     p_in_r = points_in_rotatingrectangles(lidar_points, boxes)
     ii = np.concatenate([p_in_r, p_min_z, p_max_z], axis=2).sum(axis=2)
     usability_sum = np.sum(ii == 3, axis=0)
     return usability_sum > 0
 ​
 ​
 def get_corners(box):  
     x = box[0]
     y = box[1]
     w = box[2]
     l = box[3]
     yaw = box[4]
     if yaw < 0:  # 用来映射
         yaw = yaw + np.pi
 ​
     bev_corners = np.zeros((4, 2), dtype=np.float32)
     cos_yaw = np.cos(yaw)
     sin_yaw = np.sin(yaw)
 ​
     bev_corners[0, 0] = (w / 2) * cos_yaw - (l / 2) * sin_yaw + x
     bev_corners[0, 1] = (w / 2) * sin_yaw + (l / 2) * cos_yaw + y
 ​
     bev_corners[1, 0] = (l / 2) * sin_yaw + (w / 2) * cos_yaw + x
     bev_corners[1, 1] = (w / 2) * sin_yaw - (l / 2) * cos_yaw + y
 ​
     bev_corners[2, 0] = (-w / 2) * cos_yaw - (-l / 2) * sin_yaw + x
     bev_corners[2, 1] = (-w / 2) * sin_yaw + (-l / 2) * cos_yaw + y
 ​
     bev_corners[3, 0] = (-l / 2) * sin_yaw + (-w / 2) * cos_yaw + x
     bev_corners[3, 1] = (-w / 2) * sin_yaw - (-l / 2) * cos_yaw + y
 ​
     return bev_corners
 ​
 ​
 def get_3dbox(boxes):
     boxes_3d = []
     for box in boxes:
         bev_corners = get_corners(box[:5])
         down = np.hstack(
             [bev_corners, box[5] * np.ones((bev_corners.shape[0], 1))])
         up = np.hstack(
             [bev_corners, box[6] * np.ones((bev_corners.shape[0], 1))])
         box_3d = np.vstack([down, up])
         boxes_3d.append(box_3d)
     return np.array(boxes_3d)
 ​
 ​
 if __name__ == '__main__':
     lidar_points = np.random.randint(low=0, high=10, size=(10, 3), dtype='int')
     print(lidar_points.shape)
     boxes_3d = get_3dbox([[5, 4, 2, 3, 0, 1, 3], [3, 2, 6, 2, -10, 3, 8]])
     print(boxes_3d.shape)
     results = points_in_cubes(lidar_points, boxes_3d)
     print(results)
     

http://www.kler.cn/a/376038.html

相关文章:

  • 【C语言】_求字符串长度函数strlen
  • YOLOv8从菜鸟到精通(二):YOLOv8数据标注以及模型训练
  • 【C语言】_字符串追加/连接函数strcat
  • 如何使用策略模式并让spring管理
  • vue项目引入阿里云svg资源图标
  • 解决 Mac 系统上的 node-sass 问题
  • 免费送源码:Java+Springboot+MySQL Springboot酒店客房管理系统的设计与实现 计算机毕业设计原创定制
  • [Python技术]利用akshare获取股票基本信息、K线图、最新新闻 以及大模型投资建议
  • 电脑换网络环境,IP地址会变吗?答案来了
  • 1008:计算(a+b)/c的值
  • 使用 ADB 在某个特定时间点点击 Android 设备上的某个按钮
  • 我的工具列表
  • DCN网络进行新冠肺炎影像分类
  • 浅谈C++深、浅拷贝
  • RPC和API关系
  • 2024三掌柜赠书活动第三十四期:破解深度学习
  • OpenMV的无人驾驶智能小车模拟系统
  • 使用 Q3D 计算并联和串联 RLCG 值
  • 【Python开发】大模型应用开发项目整理
  • 数据库物化视图的工作原理与Java实现
  • TPP-PEG-N3叠氮-聚乙二醇-四苯基吡嗪,功能话聚乙二醇,PEG分子量可定制
  • ms-swift+llamacpp+ollama微调部署MiniCPM-V教程
  • Yocto中MACHINE 和 DISTRO是输入,IMAGE 是他们组合的产物
  • Web3 与人工智能的跨界合作:重塑数字经济的新引擎
  • TikTok账号优化与批量管理:住宅IP与内容策略的全面指南
  • Python中的SQL数据库管理:SQLAlchemy教程