当前位置: 首页 > article >正文

【蓝桥杯专题】 树状数组(C++ | 洛谷 | acwing | 蓝桥)

菜狗现在才开始备战蓝桥杯QAQ

文章目录

  • 【蓝桥杯专题】 (C++ | 洛谷 | acwing | 蓝桥)
    • 什么是线段数组??
    • 1264. 动态求连续区间和
    • 数星星
    • 线段树
    • AcWing 1270. 数列区间最大值
    • P
  • P
  • P
  • P
  • P
  • P
  • P

在这里插入图片描述

【蓝桥杯专题】 (C++ | 洛谷 | acwing | 蓝桥)

什么是线段数组??

OI wiki

  • 树状数组是一种支持 单点修改区间查询 的,代码量小的数据结构。
  • 俩个操作的时间复杂度均为O(logn)
    在这里插入图片描述

在这里插入图片描述

  • lowbit()函数
    在这里插入图片描述
int lowbit(int x) { // 返回二进制中最后一个 1
  // x 的二进制中,最低位的 1 以及后面所有 0 组成的数。
  // lowbit(0b01011000) == 0b00001000
  //          ~~~~^~~~
  // lowbit(0b01110010) == 0b00000010
  //          ~~~~~~^~
  return x & -x;
}

在这里插入图片描述

1264. 动态求连续区间和

在这里插入图片描述
链接 链接

#include<bits/stdc++.h>

using namespace std;

const int N=100009;

int a[N],tr[N];

int n,m;

//每个数的间隔,背下来就行
int lowbit(int x)
{
    return x&-x;
}

//第x个数加上v
int add(int x,int v)
{
    //因为树状数组的性质,加一个数,只影响logn个数,所有不用全加完
    //从当前位置开始加,每个间隔是lowbit(i),一直加到最后
    for(int i=x;i<=n;i+=lowbit(i))
        tr[i]+=v;
}

//返回x的前缀和
int qurry(int x)
{
    //因为树状数组的性质,求前缀和,只用加logn个数,所有不用全加完
    //从当前位置开始累加,每个间隔是lowbit(i),一直加到i==0停止
    int cnt=0;
    for(int i=x;i!=0;i-=lowbit(i))
        cnt+=tr[i];
    return cnt;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)
        add(i,a[i]);//第i个数加上a[i]

    while(m--)
    {
        int k,x,y;
        scanf("%d%d%d",&k,&x,&y);
        if(k==0) printf("%d\n",qurry(y)-qurry(x-1));
        else add(x,y);
    }
    return 0;

}

数星星

由于本题输入数据很特殊,所以其实等价于求一下,到目前的输入为止,有多少个星星的 x 值小于等于该星星的 x 就可以了,这就代表该星星的等级。

由于该题y不递减的输入特性,导致了y在题目中毫无作用
链接 链接


#include <bits/stdc++.h>
// #include <iostream>
using namespace std;
typedef long long ll;
typedef double db;
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define per(i, a, n) for(int i = n; i <= a; i --)
#define pb push_back;
#define fs first;
#define sz second;
#include <stdlib.h> // atoi
#define debug cout<<"debug"<<"\n"
#define endl "\n";
const int INF = 0x3f3f3f3f;
const int mod=1e9+7;
const int N = 1e5 + 10;
int n;
int ans[N];
int c[N];

int lowbit(int  x) {
    return x & -x;
}

void add(int x, int v) {
    //更新整棵树
    for(int i = x; i <= 32001; i += lowbit(i)) {
        c[i] += v;
    }
}

// 计算前缀和
int query(int x) {
    int res = 0;
    for(int i = x; i > 0; i -= lowbit(i)) res += c[i];
    return res;
}

void solve () {
	cin >> n;
    rep(i, 1, n) {
        int x, y;
        cin >> x >> y;
        x ++;/*为了防止出现0的情况,给它全体横坐标加上 1 就好了。
        这其实是一个很小的细节,作者但是做的时候没考虑到然后就wa了,而给每个 x 都加上 1 并不会影响结果*/
        add(x, 1);
        ans[query(x)] ++; 
        /*然后查一下它的前缀和是多少,前缀和是多少就意味着是多少级
         这是一个动态变化的过程,而且后面的一定比前面高
         所以要实时计算*/
    }

    for(int i = 1;i <= n; i ++) {
         printf("%d\n",ans[i]);//输出每一个等级的数量
    }

}

int main(void){
	freopen("in.txt","r",stdin);
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	int T = 1;
    // cin >> T;
	while(T --) solve();
	return 0;
}

线段树

链接 链接
在这里插入图片描述
支持:单点修改 区间查询 , 时间复杂度均为log n


//定义节点
struct node{
    int l,r;//左右区间

    int sum;//总和
}tr[N*4];//记得开 4 倍空间   (满2叉树 2N - 1 还有空节点  所以为 4N)
 
void push_up(int u) {//利用它的两个儿子来算一下它的当前节点信息 
    //左儿子 u<<1 ,右儿子 u<<1|1  
}

void build(int u,int l,int r) {/*第一个参数,当前节点编号,第二个参数,左边界,第三个参数,右边界*/
    //如果当前已经是叶节点了,那我们就直接赋值就可以了
    //否则的话,说明当前区间长度至少是 2 对吧,那么我们需要把当前区间分为左右两个区间,那先要找边界点
    //这里记得赋值一下左右边界的初值
    //边界的话直接去计算一下 l + r 的下取整
    //先递归一下左儿子
    //然后递归一下右儿子
    //做完两个儿子之后的话呢 push_up 一遍u 啊,更新一下当前节点信息
    
}

int query(int u,int l,int r)//查询的过程是从根结点开始往下找对应的一个区间
{
    //如果当前区间已经完全被包含了,那么我们直接返回它的值就可以了
    //否则的话我们需要去递归来算
    //计算一下我们 当前 区间的中点是多少
    //先判断一下和左边有没有交集
    //用 sum 来表示一下我们的总和
    //看一下我们当前区间的中点和左边有没有交集
   //看一下我们当前区间的中点和右边有没有交集
 	
}

void modify(int u,int x,int v)//第一个参数也就是当前节点的编号,第二个参数是要修改的位置,第三个参数是要修改的值
{
    //如果当前已经是叶节点了,那我们就直接让他的总和加上 v 就可以了
    //否则
      //看一下 x 是在左半边还是在右半边
      //如果在右半边,那就找右儿子
      //更新完之后当前节点的信息就要发生变化对吧,那么我们就需要 pushup 一遍
}

AcWing 1270. 数列区间最大值

链接 链接

  • 思路和线段树类似, sum 改为 maxv
#include <iostream>
#include <cstring>
#include <algorithm>
#include <limits.h>
using namespace std;
const int N = 100010;
int w[N], n, m;

struct Segnode {
    int l, r, maxv; // 把记录区间和的sum换成了记录区间最大值的maxv
}seg[4 * N];

void build (int u, int l, int r) {
    if(l == r) seg[u] = {l, r, w[r]};
    else {
       int mid = l + r >> 1;
       seg[u] = {l , r};
       build(u * 2, l, mid), build(u * 2 + 1, mid +1 , r);
       seg[u].maxv = max (seg[u * 2].maxv, seg[u * 2 + 1].maxv);
    }
}

int query(int u, int l, int r) {
    if(seg[u].l >= l && seg[u].r <= r) return seg[u].maxv ;

    int res = INT_MIN;
    int mid = seg[u].l + seg[u].r >> 1;
    
    if(r > mid ) res = max(res, query(u * 2 + 1, l , r));
    if(l <= mid) res = max(res, query(u * 2 , l, r));
    return res;
}

int main()
{
    int l, r;
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; ++ i)   scanf("%d", &w[i]);
    build(1, 1, n);
    while (m --) {
        scanf("%d %d", &l, &r);
        printf("%d\n", query(1, l, r));
    }
    return 0;
}


P

链接 链接



P

链接 链接



P

链接 链接



P

链接 链接



P

链接 链接



P

链接 链接



P

链接 链接



在这里插入图片描述


http://www.kler.cn/a/3762.html

相关文章:

  • Linux磁盘空间不足,12个详细的排查方法
  • C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况
  • Chrome 132 版本新特性
  • 解决 多层跳板机情况下,ssh可以成功连但是VSCode失败
  • linux 安装PrometheusAlert配置钉钉告警
  • 将n变为一个可以被表示为2^{a}+2^{b}的正整数m
  • 软件测试 - 测试用例常见面试题
  • 百度文心一言可以完胜ChatGPT的4点可能性
  • 【超好懂的比赛题解】暨南大学2023东软教育杯ACM校赛个人题解
  • 【计组】性能指标——速度
  • linux入门---环境变量
  • 【CANoe】CAPL_UDS安全算法dll制作
  • 吸烟行为检测系统(Python+YOLOv5深度学习模型+清新界面)
  • WPF 常用控件
  • Android源码面试宝典之JobScheduler从使用到原理分析(三)【JobService、JobInfo】
  • JavaScript 之数据交互
  • PDF.js 前端开发使用指南
  • 常见的卷积神经网络结构——分类、检测和分割
  • Python实现GWO智能灰狼优化算法优化Catboost分类模型(CatBoostClassifier算法)项目实战
  • python--exec
  • 「ChatGPT」十分钟学会如何在本地调用API_KEY(最新版 | 附源码)
  • 【数据结构】第五站:带头双向循环链表
  • 【Linux】权限详解
  • Meson与Ninja
  • 蓝桥杯刷题冲刺 | 倒计时16天
  • 低代码开发:助力企业高效实现数字转型的一大利器