Python Flask内存泄漏分析定位
通过蓝图注册内存跟踪分析接口
示例代码如下,开启内存分析跟踪需要在Flask服务启动前注入环境变量
export PYTHONTRACEMALLOC=1
from typing import Literal
from flask import Blueprint, jsonify, request
import tracemalloc
import os
import linecache
snapshot = None
run_path = os.path.dirname(__file__) # 根据实际需要修改为项目目录,目的是方便后续只追踪本项目的内存泄漏
app_bus_blueprint = Blueprint('memory', __name__)
def filter_traces(snapshot: tracemalloc.Snapshot, left_trace:Literal['only my code', 'all', 'beside my code']='only my code'):
filter_list = (
# tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
# tracemalloc.Filter(False, "<unknown>"),
# tracemalloc.Filter(False, "<frozen importlib._bootstrap_external>"),
tracemalloc.Filter(False, tracemalloc.__file__),
tracemalloc.Filter(False, linecache.__file__),
tracemalloc.Filter(False, f"*.vscode-server*"),
# tracemalloc.Filter(True, jober.__file__),
)
trace_store = {
'only my code': (
tracemalloc.Filter(True, f"{run_path}*"),
),
'all': (),
'beside my code':(
tracemalloc.Filter(False, f"{run_path}*"),
)
}
filter_list = filter_list + trace_store[left_trace]
snapshot = snapshot.filter_traces(filter_list)
return snapshot
def display_top(snapshot: tracemalloc.Snapshot, key_type='lineno', limit=30):
lines = []
# snapshot = filter_traces(snapshot)
top_stats = snapshot.statistics(key_type)
lines.append("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
lines.append("#%s: %s:%s: %.1f KiB"
% (index, frame.filename, frame.lineno, stat.size / 1024))
# lines.extend(stat.traceback.format())
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
lines.append(' %s' % line)
lines.append('---------------------------------')
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
lines.append("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
lines.append("Total allocated size: %.1f KiB" % (total / 1024))
return lines
if str(os.getenv('PYTHONTRACEMALLOC', 0)) == '1':
tracemalloc.start(25)
@app_bus_blueprint.route('/memory_snapshot', methods=['POST', 'GET'], strict_slashes=False)
def memory_snapshot():
is_compare = isinstance(request.args.get('compare', False), str)
global snapshot
if not snapshot:
snapshot = tracemalloc.take_snapshot()
snapshot = filter_traces(snapshot)
return "Taken snapshot."
else:
lines = []
snapshot_current = tracemalloc.take_snapshot()
snapshot_current = filter_traces(snapshot_current)
if is_compare:
top_stats = snapshot_current.compare_to(snapshot, 'lineno')
# 过滤出只有增长的内存分配
increased_stats = [stat for stat in top_stats if stat.size_diff > 0]
# 取出增长最多的前10条数据
top_increased_stats = sorted(increased_stats, key=lambda stat: stat.size_diff, reverse=True)
for stat in top_increased_stats[:20]:
lines.append("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
lines.extend(stat.traceback.format())
# lines.append(str(stat))
lines.append('-----------------------------------')
total_increased = sum(stat.size_diff for stat in top_increased_stats)
total_decreased = sum(stat.size_diff for stat in top_stats if stat.size_diff < 0)
totol_allocated = sum(stat.size for stat in top_stats)
lines.append(f"Total increased size: {total_increased / 1024:.1f} KiB")
lines.append(f"Total decreased size: {total_decreased / 1024:.1f} KiB")
lines.append(f"Absolute change size: {(total_increased + total_decreased) / 1024:.1f} KiB")
lines.append(f"Total allocated size: {totol_allocated / 1024:.1f} KiB")
else:
lines = display_top(snapshot_current, key_type='traceback')
snapshot = snapshot_current
return jsonify(lines)
通过trace filter,可以选择’only my code’, ‘all’, 'beside my code’三种trace筛选策略,意思为:只跟踪我的工作区代码,所有,非我的代码/第三方包。
参考文章:
- 获取一个内存块的溯源;
- 定位python内存泄漏问题