当前位置: 首页 > article >正文

list(c++)

list介绍

list是STL容器中的容器,且元素在容器中的位置是分散的并与大小无关。list的底层是双向链表,其优势是在任意位置插入和删除元素的时间复杂度为O(1),但无法通过“下标[ ]”直接访问元素,需要通过从头(尾)遍历元素找到元素,多用于需要大量数据的插入和删除,且对数据的随机访问比较少。

list使用

一、list的构造

构造函数接口说明
list (size_type n, const value_type& val = value_type())
构造的 list 中包含 n 个值为 val 元素
list()
构造空的 list
list (const list& x)
拷贝构造函数
list (InputIterator first, InputIterator last)
[first, last) 区间中的元素构造 list

 

// list的构造
    list<int> l1;                         // 构造空的l1
    list<int> l2(4, 100);                 // l2中放4个值为100的元素
    list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    list<int> l4(l3);                    // 用l3拷贝构造l4

    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    list<int> l5(array, array + sizeof(array) / sizeof(int));

    // 列表格式初始化C++11
    list<int> l6{ 1,2,3,4,5 };

二、list 的iterator的使用

 

接口说明
begin + end
返回第一个元素的迭代器 + 返回最后一个元素下一个位置的迭代器
rbegin
+ rend
返回第一个元素的 reverse_iterator, end 位置 返回最后一个元素下一个位 置的 reverse_iterator, begin 位置

 

// list迭代器的使用
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const list<int>& l)
{
    // 注意这里调用的是list的 begin() const,返回list的const_iterator对象
    for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
        // *it = 10; 编译不通过
    }

    cout << endl;
}

void TestList2()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array + sizeof(array) / sizeof(array[0]));
    // 使用正向迭代器正向list中的元素
    // list<int>::iterator it = l.begin();   // C++98中语法
    auto it = l.begin();                     // C++11之后推荐写法
    while (it != l.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    // 使用反向迭代器逆向打印list中的元素
    // list<int>::reverse_iterator rit = l.rbegin();
    auto rit = l.rbegin();
    while (rit != l.rend())
    {
        cout << *rit << " ";
        ++rit;
    }
    cout << endl;
}

三、list capacity

接口说明
empty
检测 list 是否为空,是返回 true ,否则返回 false
size
返回 list 中有效节点的个数

 四、list element access

接口说明
front
返回 list 的第一个节点中值的引用
back
返回 list 的最后一个节点中值的引用

五、list modifiers 

接口说明
push_front
list 首元素前插入值为 val 的元素
pop_front
删除 list 中第一个元素
push_back
list 尾部插入值为 val 的元素
pop_back
删除 list 中最后一个元素
insert
list position 位置中插入值为 val 的元素
erase
删除 list position 位置的元素
swap
交换两个 list 中的元素
clear
清空 list 中的有效元素
// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{
    int array[] = { 1, 2, 3 };
    list<int> L(array, array + sizeof(array) / sizeof(array[0]));

    // 在list的尾部插入4,头部插入0
    L.push_back(4);
    L.push_front(0);
    PrintList(L);

    // 删除list尾部节点和头部节点
    L.pop_back();
    L.pop_front();
    PrintList(L);
}

// insert /erase 
void TestList4()
{
    int array1[] = { 1, 2, 3 };
    list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

    // 获取链表中第二个节点
    auto pos = ++L.begin();
    cout << *pos << endl;

    // 在pos前插入值为4的元素
    L.insert(pos, 4);
    PrintList(L);

    // 在pos前插入5个值为5的元素
    L.insert(pos, 5, 5);
    PrintList(L);

    // 在pos前插入[v.begin(), v.end)区间中的元素
    vector<int> v{ 7, 8, 9 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);

    // 删除pos位置上的元素
    L.erase(pos);
    PrintList(L);

    // 删除list中[begin, end)区间中的元素,即删除list中的所有元素
    L.erase(L.begin(), L.end());
    PrintList(L);

 // 交换l1和l2中的元素
    list<int> l2;
    l1.swap(l2);
    PrintList(l1);
    PrintList(l2);

    // 将l2中的元素清空
    l2.clear();
    cout << l2.size() << endl;
}

 六、list的迭代器失效

可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无 效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此list中进行插入 时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭 代器,其他迭代器不会受到影响
void TestListIterator1()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
      {
      // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
        其赋值
        l.erase(it);
        ++it;
      }
}
// 改正
void TestListIterator()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
    {
        l.erase(it++); // it = l.erase(it);
    }
}

 

模拟实现

一、节点

template<class T>
	struct list_node
	{
		T _data;
		list_node<T>* _next;
		list_node<T>* _prev;

		list_node(const T& x = T())
			:_data(x)
			, _next(nullptr)
			, _prev(nullptr)
		{}
	};

二、构造

        void empty_init()
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
			_size = 0;
		}
       //无参构造
		list()
		{
			empty_init();
		}
        //拷贝构造
		// lt2(lt1)
		list(const list<T>& lt)
		{
			empty_init();

			for (auto& e : lt)
			{
				push_back(e);
			}
		}
        //n个val构造
        list(size_t n, const T& val = T())
 		{
			empty_init();
			for (size_t i = 0; i < n; i++)
			{
				push_back(val);
			}
		}

三、迭代器

迭代器:类封装节点指针,重载运算符,模拟指针的行为

	template<class T, class Ref, class Ptr>
	struct list_iterator
	{
		typedef list_node<T> Node;
		typedef list_iterator<T, Ref, Ptr> Self;
		Node* _node;

		list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*()
		{
			 return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator++(int)
		{
			Self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		Self operator--(int)
		{
			Self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		bool operator==(const Self& s)
		{
			return _node == s._node;
		}
	};



		typedef list_iterator<T, T&, T*> iterator;
		typedef list_iterator<T, const T&, const T*> const_iterator;

        iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}

四、insert

        iterator insert(iterator pos, const T& val)
		{
			Node* cur = pos._node;
			Node* newnode = new Node(val);
			Node* prev = cur->_prev;

			// prev newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;

			newnode->_next = cur;
			cur->_prev = newnode;
			++_size;

			return iterator(newnode);
		}

五、erase

        iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* del = pos._node;
			Node* prev = del->_prev;
			Node* next = del->_next;

			prev->_next = next;
			next->_prev = prev;
			delete del;

			--_size;

			return iterator(next);
		}

六、头(尾)插(删)

        void push_back(const T& x)
		{
			/*Node* new_node = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = new_node;
			new_node->_prev = tail;

			new_node->_next = _head;
			_head->_prev = new_node;*/

			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_front()
		{
			erase(begin());
		}

		void pop_back()
		{
			erase(--end());
		}

七、析构

        ~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}

八、赋值运算符重载

        // lt2 = lt3
		//list& operator=(list lt)
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}

九、clear

        void clear()
		{
			auto it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}


http://www.kler.cn/a/377554.html

相关文章:

  • HTML5 动画效果:淡入淡出(Fade In/Out)详解
  • 使用强化学习训练神经网络玩俄罗斯方块
  • 机器学习基础-机器学习的常用学习方法
  • 使用python将多个Excel表合并成一个表
  • 操作手册:集成钉钉审批实例消息监听配置
  • selenium合集
  • 基于milvus的多模态检索
  • AWS RDS Oracle hit ORA-39405
  • 第三十一章 单页与多页应用程序概念
  • 单智能体carla强化学习实战工程介绍
  • 使用Django REST framework构建RESTful API
  • 【React 轮子】文本溢出后显示展开/收起按钮
  • java jsoup解析豆瓣电影数据html实战教程
  • Linux云计算 |【第五阶段】CLOUD-DAY5
  • 2.WebSocket进阶: 深入探究实时通信的最佳实践与优化技巧
  • Rust 力扣 - 1652. 拆炸弹
  • 深入理解跨域资源共享(CORS)安全问题原理及解决思路
  • C++编程法则365天一天一条(27)std::initializer_list 轻量级初始化列表
  • OKHTTP断点续传
  • 【运输&加载码头】仓库新卸物料检测系统源码&数据集全套:改进yolo11-DRBNCSPELAN
  • 利用Docker Compose构建微服务架构
  • 90%的读者都惊呆了!一键生成的微头条,连作者都认不出来是AI作品?
  • Linux常见指令大全(必要+知识点)
  • 设计模式08-行为型模式(命令模式/迭代器模式/观察者模式/Java)
  • 免公网服务器实现DDNS功能(API动态修改DNS解析IP)
  • webstorm 项目如何配置支持 nodejs