当前位置: 首页 > article >正文

基于Retinex算法的图像去雾matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.........................................................
%卷积滤波
R_conv3 = imfilter(Img1_RN,e,'conv', 'replicate'); % 对红色分量进行第三次卷积滤波
G_conv3 = imfilter(Img1_RG,e,'conv', 'replicate'); % 对绿色分量进行第三次卷积滤波
B_conv3 = imfilter(Img1_RB,e,'conv', 'replicate'); % 对蓝色分量进行第三次卷积滤波
R_log3 = log(R_conv3); % 对红色分量第三次卷积结果取对数
G_log3 = log(G_conv3); % 对绿色分量第三次卷积结果取对数
B_log3 = log(B_conv3); % 对蓝色分量第三次卷积结果取对数
R_log30 = log(Img1_RN); % 对原始红色分量又一次取对数
G_log30 = log(Img1_RG); % 对原始绿色分量又一次取对数
B_log30 = log(Img1_RB); % 对原始蓝色分量又一次取对数
R_diff3 = (R_log30-R_log3)/3; % 计算红色分量的第三次差值
G_diff3 = (G_log30-G_log3)/3; % 计算绿色分量的第三次差值
B_diff3 = (B_log30-B_log3)/3; % 计算蓝色分量的第三次差值
%///
R_sum   = R_diff+R_diff2+R_diff3; % 计算红色分量的总和
G_sum   = G_diff+G_diff2+G_diff3; % 计算绿色分量的总和
B_sum   = B_diff+B_diff2+B_diff3; % 计算蓝色分量的总和
cr      = im2uint8(R_sum); % 将红色分量总和转换为无符号 8 位整数类型
cg      = im2uint8(G_sum); % 将绿色分量总和转换为无符号 8 位整数类型
cb      = im2uint8(B_sum); % 将蓝色分量总和转换为无符号 8 位整数类型
%集成处理后的分量得到结果图像
InFLOG  = cat(3, cr, cg, cb); % 将处理后的三个颜色分量合并为一个图像

figure; % 创建一个新的图形窗口
subplot(221); % 创建 2x2 子图布局中的第一个子图
imshow(Img1); title('原图像'); % 显示原始图像并添加标题
subplot(222); % 创建 2x2 子图布局中的第二个子图
imshow(InFLOG); title('Retinex处理后的图像'); % 显示处理后的图像并添加标题
subplot(223); % 创建 2x2 子图布局中的第三个子图
imhist(rgb2gray(Img1), 100); title('原灰度直方图'); % 显示原始图像的灰度直方图并添加标题
subplot(224); % 创建 2x2 子图布局中的第四个子图
imhist(rgb2gray(InFLOG), 100); title('Retinex处理后的灰度直方图'); % 显示处理后图像的灰度直方图并添加标题
184

4.算法理论概述

       在计算机视觉和图像处理领域,图像去雾是一个重要的研究课题。雾天条件下拍摄的图像往往会出现对比度降低、颜色失真和细节模糊等问题,严重影响了图像的质量和后续的处理与分析。Retinex 算法作为一种有效的图像增强方法,在图像去雾方面取得了显著的效果。

       Retinex 理论是由 Edwin Land 在 20 世纪 60 年代提出的一种颜色恒常性理论。该理论认为,人类视觉系统感知到的物体颜色和亮度是由物体表面的反射特性决定的,而与光照条件无关。根据 Retinex 理论,图像可以看作是由光照分量和反射分量组成的。光照分量决定了图像的整体亮度,而反射分量则决定了图像的颜色和细节。Retinex 算法的目的就是从图像中分离出光照分量和反射分量,然后对反射分量进行增强,以达到图像增强和去雾的效果。

5.算法完整程序工程

OOOOO

OOO

O


http://www.kler.cn/a/378372.html

相关文章:

  • LeetCode //C - 447. Number of Boomerangs
  • c语言 变量类型总结
  • 软件测试基础六 (Linux)
  • 你丢失的数据,10款数据恢复软件帮你找!!
  • SpringBoot整合EasyExcel加Vue
  • Vue2指令原理手写
  • WPF 实现冒泡排序可视化
  • Pr 视频效果:ASC CDL
  • 基于物联网的户外环境检测装置教学文章
  • Qt中的Model与View 4:QStandardItemModel与QTableView
  • 【FL0013】基于SpringBoot和微信小程序的机电公司管理信息系统
  • 人工智能如何改变未来生活:从医疗到日常的全面升级
  • 项目学习总结
  • js中多let与var
  • 如何使用 EXPLAIN 分析查询计划?
  • 例行性工作
  • [LeetCode] 1137. 第N个泰波那契数
  • 串口屏控制的自动滑轨(未完工)
  • 【论文解读】EdgeYOLO:一种边缘实时目标检测器(附论文地址)
  • Django响应
  • 滑动窗口习题篇(上)
  • cookie、session、http简单理解
  • js逆向-模拟加密
  • 【华为HCIP实战课程三十】中间到中间系统协议IS-IS路由渗透及TAG标识详解,网络工程师
  • Centos7如何实现PXE网络批量无人值守安装
  • 4499元起!苹果发布新款Mac mini:升级M4/M4 Pro 仅手掌大小