当前位置: 首页 > article >正文

‌5G SSB(同步信号块)位于物理层‌

‌5G SSB(同步信号块)位于物理层‌。在5G NR中,SSB由主同步信号(PSS)、辅同步信号(SSS)和物理广播信道(PBCH)组成,这些信号共同构成了SSB。SSB的主要功能是帮助用户设备(UE)进行初始接入,实现与5G基站(gNB)的同步‌12。
SSB的组成和功能
SSB由PSS、SSS和PBCH组成:
‌PSS‌:用于提供基本的同步信息,采用BPSK调制的127长度的m序列。
‌SSS‌:用于提供更详细的同步信息,采用BPSK调制的127长度的Gold序列。
‌PBCH‌:包含系统信息,如MIB(主信息块),用于UE进行系统信息的获取和初始接入‌12。
SSB在时域和频域的映射
在时域中,SSB映射到4个OFDM符号;在频域中,SSB映射到20个资源块(RBs),即240个子载波。SSB的频率位置由上层协议栈配置,以支持更稀疏的搜索栅格,便于检测SSB‌1。
SSB的配置和传输方式
在5G NR中,SSB采用波束扫描技术,多个SSB以大约20毫秒的间隔进行周期性传输。在一个SS突发集中,约64个SSB通过不同的波束传输。单个SS突发集内的SS块传输时间被限制在大约5毫秒的窗口内‌1。

下行物理信号
信号和信道的差别在于,信号仅存在于物理层,参考信号用于接受端对于其后数据的解调。相对于LTE,NR取消了CRS参考信号。如此可以减少开销,避免了小区间CRS干扰,提升了频谱效率。没有了CRS以后,它的功能,由其他的参考信号替代。 LTE中RS设计:CRS是核心,所有RS均和CELL-ID绑定。 NR中RS设计:CRS free,RS功能重组。除PSS/SSS外,其他所有RS和CELL-ID解耦;PSS/SSS可波束赋形后使用窄波束发送;控制信道和数据信道均采用DMRS解调;DMRS类型,端口数、配置等进行了增强;CSI-RS Pattern和配置进行了增强,用于RRM、CSI获取、波束管理和精细化时频跟踪等;新增PT-RS用于高频段下相位噪声跟踪。
SSB

synchronization Signaling Block同步信号块,PBCH和PSS/SSS作为一个整体出现,统称为SSB。参考TS38.211 7.3.3
一、组成
PSS/SSS
主同步信号/辅同步信号,0~1007,共1008个。
PSS位于符号0的中间127个子载波(56~182)。3个取值
SSS位于符号2的中间127个子载波(56182);为了保护PSS、SSS,它们的两端分别有不同的子载波{4855,183~191}Set 0。336个值
PBCH
PBCH位于符号1/3,以及符号2,其中符号1/3上占0~239所有子载波,符号2上占用除去SSS占用子载波及保护SSS的子载波Set 0以外的所有子载波。
PBCH信道的每个RB中包含3个RE的DM-RS导频,为避免小区间PBCH DM-RS干扰,3GPP定义PBCH的DM-RS在频域上根据小区CELL ID错开。DM-RS位于PBCH中间,在符号1/3上,每个符号上60个,间隔4个子载波:{0+v,4+v,8+v…}v为PCI mod 4值。
二、资源映射
与LTE不同,频域可灵活配置,不需要配置在载波的中心频点处,可以配置在载波的任意一个位置。PBCH和PSS/SSS一共占用240个子载波。
时域上,PBCH和PSS/SSS共占用4个符号
三、频域特性
占用天线口Port4000,Numerology只支持μ∈{0,1,2,3},即SCS仅支持15、30、120、240。
RB边界不一定与载波的RB边界对齐,可偏移\operatorname*{k}{SSB}个子载波,\operatorname*{k}{SSB}由MIB中SSB子载波偏置指示
15KHz、30KHz时\operatorname*{k}{SSB}取值0~23,共需要5bit信息。此时采用SSB子载波偏置的4bit表示\operatorname*{k}{SSB}的低4位,用PBCH额外编码的第6位表示\operatorname*{k}{SSB}的高1位
FR2频段,SSB采用120SCS时,\operatorname*{k}
{SSB}取值0~11,恰好可以使用SSB子载波偏置的4bit表示。
四、时域特性
在一个5ms半帧上可以发送多次 NR定义了不同频率范围、不同Numerology下,SSB在时域上的分布 参考《5G空口设计与实践进阶》
Case A
.适用于SCS=15KHz
.OFDM符号索引:{2,8}+14n
.当Fc≤3GHz时,n=0,1,最大发送次数=4;
.当3GHz<Fc≤6GHz时,n=0,1,2,3,最大发送次数=8;
.SSB时域上非连续
#0、#1,可以用于下行控制信道信息
#12、#13,可以用于上行控制信道信息
#6、#7,为了保证与30KHz的SCS配置共存
通过这种设计,可以在SSB与控制/数据信道采用不同SCS的条件下,最大程度降低SSB点传输对数据传输的影响。
Case B
.适用于SCS=30KHz
.OFDM符号索引:{4,8,16,20}+28n
.当Fc≤3GHz时,n=0,SSB占2个时隙,最大发送次数=4;
.当3GHz<Fc≤6GHz时,n=0,1,SSB占4个时隙,最大发送次数=8;
.不同时隙非对称
0号时隙内,SSB占用符号#4-#7
1号时隙内,SSB占用符号#2-#9
目的:保证30kHz子载波的SSB与15kHz子载波的控制/数据信道的共存
Case C
.适用于SCS=30KHz
.OFDM符号索引:{2,8}+14n
.当FDD频段Fc≤3GHz或TDD频段Fc≤2.4GHz时,n=0,1,最大发送次数=4;
.当FDD频段3GHz<Fc≤6GHz或TDD频段2.4GHz<Fc≤6GHz时,n=0,1,2,3,最大发送次数=8;
.#6、#7时隙不映射,为了保证与60KHz的SCS配置共存
通过这种设计,可以在SSB与控制/数据信道采用不同SCS的条件下,最大程度降低SSB点传输对数据传输的影响。
Case D
.适用于SCS=120KHz
.OFDM符号索引:{4,8,16,20}+28n
.当Fc>6GHz时,n={0~18}-{4,9,14}(0到18的整数集合去除4,9,14)
.5ms的SSB集合周期内,共有4组SSB信息块,每组占用连续8个时隙(每个时隙分配2个SSB,共分配16个SSB),中间间隔2个时隙,最大发送次数=64;
.当Fc>6GHz时,控制/数据信道可用的SCS配置为60kHz和120kHz,因此,采用Case D配置下,只需考虑与60kHz子载波的控制数据信道的共存
Case E
.适用于SCS=240KHz
.OFDM符号索引:{8,12,16,20,32,36,40,44}+56n
.当Fc>6GHz时,n={0~8}-{4},最大发送次数=64;
五、发送机制
每个SSB Block都能独立解码,并且UE 解析出来一个SSB之后,可以获取小区ID,SFN,SSB Index(类似于波束ID)等消息。
Sub 3G定义最大4个SSB Block(TDD系统的2.4GHz~6GHz也可以配置8个SSB Block);对于Sub 3G~Sub 6G,定义最大8个SSB Block;6GHz以上,定义了最大64个。
六、基于SSB的CSI上报
SSB不但作为小区搜索使用,同时也可以作为UE进行小区测量的参考信号
CSI上报
L1-RSRP:用于小区选择,小区重选以及切换等移动性管理流程
SSB RI:SSB资源指示,即SSB波束的索引,用于初始的波束管理
其他的CSI上报,如CQI,PMI,RI等需要通过CSI-RS的测量来完成
七、小结
时频资源
时频特性
发送机制


http://www.kler.cn/a/380386.html

相关文章:

  • myql explain sql分析详解
  • vue2 升级为 vite 打包
  • 【HarmonyOS】鸿蒙将资源文件夹Resource-RawFile下的文件存放到沙箱目录下
  • 深度学习在自动驾驶车辆车道检测中的应用
  • 记录一次前端绘画海报的过程及遇到的几个问题
  • 美国站群服务器如何帮助实现有效的多域名管理?
  • Python淘宝数据挖掘与词云图制作指南
  • Python 继承、多态、封装、抽象
  • 华为HarmonyOS打造开放、合规的广告生态 - 原生广告
  • JVM出现OOM错误排查
  • 类被加载到jvm后再被注册到Spring中
  • Java 教程简介
  • JqGird 动态生成列使用
  • django各个文件简单介绍
  • RabbitMQ交换机类型
  • C#代码生成器实现原理
  • w~大模型~合集19
  • 【JAVA】Java基础—Java开发环境搭建:安装JDK与IDE(如IntelliJ IDEA、Eclipse)
  • 临街矩阵乘以自己转置的含义
  • 气象大模型学习笔记
  • QT:QThread:重写run函数
  • HarmonyOS:UIAbility组件概述
  • k8s 上如何跑 Dolphins 模型
  • CentOS一次性安装 Nginx 的脚本指南
  • MySQL45讲 第十一讲 怎么给字符串字段加索引?
  • TCP建立连接之后怎么保持长连接(检测连接断没断)