Flink的环境搭建及使用
在idea中创建一个Maven项目,导入Flink的依赖,在代码中创建Flink环境,编写代码.
如果不想去找flink依赖,就去flink官网,提供了一个mvn的命令,快速下载在本地构建一个flink的项目,可以直接从这个项目的pom.xml文件中拿到依赖配置
一、环境搭建
pom.xml文件的依赖导入
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.15.4</flink.version>
<target.java.version>1.8</target.java.version>
<scala.binary.version>2.12</scala.binary.version>
<maven.compiler.source>${target.java.version}</maven.compiler.source>
<maven.compiler.target>${target.java.version}</maven.compiler.target>
<log4j.version>2.17.1</log4j.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
二、使用Flink
以WordCount为例:
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class Demo1WordCount {
public static void main(String[] args) throws Exception {
//1、创建flink的执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置并行度,一个并行度对应一个task
env.setParallelism(2);
//修改数据从上游发送到下游的缓存时间
env.setBufferTimeout(2000);
/*
* 无界流
*/
//2、读取数据
//nc -lk 8888
DataStream<String> linesDS = env.socketTextStream("master", 8888);
//一行转换成多行
DataStream<String> wordsDS = linesDS
.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String line, Collector<String> out) throws Exception {
for (String word : line.split(",")) {
//将数据发送到下游
out.collect(word);
}
}
});
//转换成kv格式
DataStream<Tuple2<String, Integer>> kvDS = wordsDS
.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String word) throws Exception {
//返回一个二元组
return Tuple2.of(word, 1);
}
});
//按照单词进行分组
//底层是hash分区
KeyedStream<Tuple2<String, Integer>, String> keyByDS = kvDS
.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> kv) throws Exception {
return kv.f0;
}
});
//统计数量
DataStream<Tuple2<String, Integer>> countDS = keyByDS
.reduce(new ReduceFunction<Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> reduce(Tuple2<String, Integer> kv1,
Tuple2<String, Integer> kv2) throws Exception {
int count = kv1.f1 + kv2.f1;
return Tuple2.of(kv1.f0, count);
}
});
//打印结果
countDS.print();
//3、启动flink
env.execute("wc");
}
}