当前位置: 首页 > article >正文

深度学习经典模型之LeNet-5

1 LeNet-5

1.1 模型介绍

​ LeNet-5是由 L e C u n LeCun LeCun 提出的一种用于识别手写数字和机器印刷字符的卷积神经网络(Convolutional Neural Network,CNN) [ 1 ] ^{[1]} [1],其命名来源于作者 L e C u n LeCun LeCun的名字,5则是其研究成果的代号,在LeNet-5之前还有LeNet-4和LeNet-1鲜为人知。LeNet-5阐述了图像中像素特征之间的相关性能够由参数共享的卷积操作所提取,同时使用卷积、下采样(池化)和非线性映射这样的组合结构,是当前流行的大多数深度图像识别网络的基础。

1.2 模型结构

在这里插入图片描述

​ 图4.1 LeNet-5网络结构图

​ 如图4.1所示,LeNet-5一共包含7层(输入层不作为网络结构),分别由2个卷积层、2个下采样层和3个连接层组成,网络的参数配置如表4.1所示,其中下采样层和全连接层的核尺寸分别代表采样范围和连接矩阵的尺寸(如卷积核尺寸中的 “ 5 × 5 × 1 / 1 , 6 ” “5\times5\times1/1,6” “5×5×1/1,6”表示核大小为 5 × 5 × 1 5\times5\times1 5×5×1、步长为 1 ​ 1​ 1​且核个数为6的卷积核)。

​ 表4.1 LeNet-5网络参数配置

网络层输入尺寸核尺寸输出尺寸可训练参数量
卷积层 C 1 C_1 C1 32 × 32 × 1 32\times32\times1 32×32×1 5 × 5 × 1 / 1 , 6 5\times5\times1/1,6 5×5×1/1,6 28 × 28 × 6 28\times28\times6 28×28×6 ( 5 × 5 × 1 + 1 ) × 6 (5\times5\times1+1)\times6 (5×5×1+1)×6
下采样层 S 2 S_2 S2 28 × 28 × 6 28\times28\times6 28×28×6 2 × 2 / 2 2\times2/2 2×2/2 14 × 14 × 6 14\times14\times6 14×14×6 ( 1 + 1 ) × 6 (1+1)\times6 (1+1)×6 ∗ ^*
卷积层 C 3 C_3 C3 14 × 14 × 6 14\times14\times6 14×14×6 5 × 5 × 6 / 1 , 16 5\times5\times6/1,16 5×5×6/1,16 10 × 10 × 16 10\times10\times16 10×10×16 151 6 ∗ 1516^* 1516
下采样层 S 4 S_4 S4 10 × 10 × 16 10\times10\times16 10×10×16 2 × 2 / 2 2\times2/2 2×2/2 5 × 5 × 16 5\times5\times16 5×5×16 ( 1 + 1 ) × 16 (1+1)\times16 (1+1)×16
卷积层 C 5 C_5 C5 ∗ ^* 5 × 5 × 16 5\times5\times16 5×5×16 5 × 5 × 16 / 1 , 120 5\times5\times16/1,120 5×5×16/1,120 1 × 1 × 120 1\times1\times120 1×1×120 ( 5 × 5 × 16 + 1 ) × 120 (5\times5\times16+1)\times120 (5×5×16+1)×120
全连接层 F 6 F_6 F6 1 × 1 × 120 1\times1\times120 1×1×120 120 × 84 120\times84 120×84 1 × 1 × 84 1\times1\times84 1×1×84 ( 120 + 1 ) × 84 (120+1)\times84 (120+1)×84
输出层 1 × 1 × 84 1\times1\times84 1×1×84 84 × 10 84\times10 84×10 1 × 1 × 10 1\times1\times10 1×1×10 ( 84 + 1 ) × 10 (84+1)\times10 (84+1)×10

∗ ^* 在LeNet中,下采样操作和池化操作类似,但是在得到采样结果后会乘以一个系数和加上一个偏置项,所以下采样的参数个数是 ( 1 + 1 ) × 6 ​ (1+1)\times6​ (1+1)×6​而不是零。

∗ ^* C 3 C_3 C3卷积层可训练参数并未直接连接 S 2 S_2 S2中所有的特征图(Feature Map),而是采用如图4.2所示的采样特征方式进行连接(稀疏连接),生成的16个通道特征图中分别按照相邻3个特征图、相邻4个特征图、非相邻4个特征图和全部6个特征图进行映射,得到的参数个数计算公式为 6 × ( 25 × 3 + 1 ) + 6 × ( 25 × 4 + 1 ) + 3 × ( 25 × 4 + 1 ) + 1 × ( 25 × 6 + 1 ) = 1516 6\times(25\times3+1)+6\times(25\times4+1)+3\times(25\times4+1)+1\times(25\times6+1)=1516 6×(25×3+1)+6×(25×4+1)+3×(25×4+1)+1×(25×6+1)=1516,在原论文中解释了使用这种采样方式原因包含两点:限制了连接数不至于过大(当年的计算能力比较弱);强制限定不同特征图的组合可以使映射得到的特征图学习到不同的特征模式。

在这里插入图片描述

​ 图4.2 S 2 S_2 S2 C 3 C_3 C3之间的特征图稀疏连接

∗ ^* C 5 C_5 C5卷积层在图4.1中显示为全连接层,原论文中解释这里实际采用的是卷积操作,只是刚好在 5 × 5 5\times5 5×5卷积后尺寸被压缩为 1 × 1 ​ 1\times1​ 1×1​,输出结果看起来和全连接很相似。

1.3 模型特性

  • 卷积网络使用一个3层的序列组合:卷积、下采样(池化)、非线性映射(LeNet-5最重要的特性,奠定了目前深层卷积网络的基础)
  • 使用卷积提取空间特征
  • 使用映射的空间均值进行下采样
  • 使用 t a n h tanh tanh s i g m o i d sigmoid sigmoid进行非线性映射
  • 多层神经网络(MLP)作为最终的分类器
  • 层间的稀疏连接矩阵以避免巨大的计算开销

http://www.kler.cn/a/381557.html

相关文章:

  • 嵌入式单片机中Flash存储器控制与实现
  • MySql详细教程-从入门到进阶(超实用)
  • linux RCU调优
  • Chrome被360导航篡改了怎么改回来?
  • (echarts)数据地图散点类型根据条件设置不同的标记图片
  • css改变输入右下角图标
  • 分类 classificaton
  • 字典学习python
  • vue props无法被watch
  • 使用Spring Validation实现数据校验详解
  • AWTK-HarmonyOS NEXT 发布
  • 华为HarmonyOS借助AR引擎帮助应用实现虚拟与现实交互的能力4-检测环境中的平面
  • QML----复制指定下标的ListModel数据
  • 【基于轻量型架构的WEB开发】课程 12.4 页面跳转 Java EE企业级应用开发教程 Spring+SpringMVC+MyBatis
  • Python Matplotlib 子图绘制
  • 省级-能源结构数据(电力消费水平)(2000-2022年)
  • 【go从零单排】go三种结构体:for循环、if-else、switch
  • 【大数据学习 | HBASE】habse的表结构
  • vue前端面试题及答案2024
  • 飞书API-获取tenant_access_token
  • Melty 主体流程图
  • ctfshow文件包含web78~81
  • 八、1.STM32之DMA实验--DMA数据转运
  • 从传统服务器到虚拟化:虚拟机 VM 如何改变计算游戏规则?
  • 【spring】Cookie和Session的设置与获取(@CookieValue()和@SessionAttribute())
  • 企业HR如何选对一款智能招聘软件?