当前位置: 首页 > article >正文

Genmoai-smol:专为单 GPU 优化的开源 AI 视频生成模型,低显存生成高质量视频

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Genmoai-smol 是一个优化过的视频生成模型,能在单个 GPU 上运行,并减少显存占用。
  2. 该模型支持通过 Gradio UI 或命令行界面生成视频,具有高保真度的运动和强大的提示遵循能力。
  3. 项目开源,提供了详细的安装和运行教程,适合在显存有限的设备上进行视频创作。

正文(附运行示例)

Genmoai-smol 是什么

在这里插入图片描述

Genmoai-smol 是 Genmoai 的 txt2video 模型 的一个优化分支,专为在单个 GPU 节点上运行而设计,减少了显存占用。它能够在只有 24GB 显存的 GPU 上生成高质量的视频内容,适合资源受限的环境使用。模型通过高保真度的运动和强大的提示遵循能力,缩小了开放和封闭视频生成系统之间的差距。

Genmoai-smol 的主要功能

  • 视频生成:将文本描述转换为视频内容。
  • 高保真度运动:生成自然流畅的视频内容。
  • 强大的提示遵循能力:理解并遵循用户的文本提示。
  • 优化显存占用:通过技术手段减少显存使用,适合单 GPU 设备。
  • 用户界面:提供 Gradio UI 和命令行界面两种操作方式。

Genmoai-smol 的技术原理

  • 深度学习模型:基于生成对抗网络(GANs)或变分自编码器(VAEs)等深度学习技术生成视频内容。
  • 文本到视频的转换:通过自然语言处理(NLP)技术理解文本提示,生成对应的视频内容。
  • 显存优化:通过将部分模型移回 CPU 和使用 bfloat16 数据类型等手段优化显存使用。
  • 多步骤推理:推理步骤不改变显存使用,但生成视频的时间随步骤增加而增加。
  • 系统资源管理:需要大量系统 RAM(约 64GB)来保证流畅的视频生成过程。

如何运行 Genmoai-smol

安装步骤

  1. 克隆项目仓库:
git clone https://github.com/victorchall/genmoai-smol
cd models
  1. 安装 uv 工具并创建虚拟环境:
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .
  1. 下载模型权重(可以从 Hugging Face 下载或使用磁力链接)。

运行 Gradio UI

启动 Gradio UI:

python3 -m mochi_preview.gradio_ui --model_dir "<path_to_downloaded_directory>"

命令行生成视频

使用命令行直接生成视频:

python3 -m mochi_preview.infer --prompt "A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl filled with lemons and sprigs of mint against a peach-colored background. The hand gently tosses the lemon up and catches it, showcasing its smooth texture. A beige string bag sits beside the bowl, adding a rustic touch to the scene. Additional lemons, one halved, are scattered around the base of the bowl. The even lighting enhances the vibrant colors and creates a fresh, inviting atmosphere." --seed 1710977262 --cfg-scale 4.5 --model_dir "<path_to_downloaded_directory>"

<path_to_downloaded_directory> 替换为您下载模型权重的目录路径。

资源

  • 关注并回复公众号【63】或【GenmoaiSmol】获取相关项目资源。

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


http://www.kler.cn/a/381712.html

相关文章:

  • 强化特种作业管理,筑牢安全生产防线
  • 面向对象编程概念
  • 软件测试之全链路压测详解
  • day14-16系统服务管理和ntp和防火墙
  • 餐饮业的数字化转型:JSP订餐管理系统的设计与开发
  • 用 gdbserver 调试 arm-linux 上的 AWTK 应用程序
  • 页面上的内容的生成图片后,保存为word,并下载
  • 【数据结构篇】探索堆的算法的巧妙
  • Mysql在oracle的安装与配置(怕忘)
  • qt QInputDialog详解
  • RabbitMQ高级特性
  • 产品经理笔记
  • Android无限层扩展多级recyclerview列表+实时搜索弹窗
  • 双token无感刷新nodejs+vue3(保姆级教程)
  • 【Eclipse系列】Eclipse版本与jdk对应版本
  • MySQL 安装与配置
  • 大数据-204 数据挖掘 机器学习理论 - 混淆矩阵 sklearn 决策树算法评价
  • 如何用pycharm连接sagemath?
  • FPGA跨时钟域处理方法
  • 【MATLAB源码-第206期】基于matlab的差分进化算法(DE)机器人栅格路径规划,输出做短路径图和适应度曲线。
  • 独显装完ubuntu后启动黑屏显示/dev/sda:clean files blocks的解决方案
  • 基于java+SpringBoot+Vue的微服务在线教育系统设计与实现
  • 指标+AI+BI:构建数据分析新范式丨2024袋鼠云秋季发布会回顾
  • 循环神经网络RNN文本分类
  • Gitlab自动化相关脚本
  • 国标GB28181视频平台EasyCVR私有化视频平台工地防盗视频监控系统方案