数据结构和算法-01背包问题01-认识01背包
0-1背包
什么是0-1背包问题?
[0-1背包问题Knapsack Problem] 假设有一个背包,可承载的最大重量是W(kg), 现在有n个物品,每个物品的重量不等, 并且不可分割。我们期待选择几件物品放入背包中,在不超过背包最大承载重量的前提下,如何让背包中的物品总重量最大?
回溯法
分析
int capacity = 4;
int[] weight = {2, 1, 3};
int[] val = {4, 2, 3};
参考实现
import java.util.List;
public class Knapsack {
private final int[] weight;
private final int[] val;
private final int capacity; //背包容量(最大承载)
private final int n; //物品数量
private int perfectValue; //最大价值
public Knapsack(int[] weight, int[] val, int capacity) {
this.weight = weight;
this.val = val;
this.capacity = capacity;
this.n = weight.length;
}
public int getPerfectValue() {
return perfectValue;
}
public void dfs(int depth, int sumWeight, int sumVal) {
if (depth == n) { //当前路径搜索完毕
if (sumVal > perfectValue) {
perfectValue = sumVal;
}
return;
}
if (sumWeight + weight[depth] <= capacity) {//总重+当前重量<=最大载重
visited[depth] = true;
dfs(depth + 1, sumWeight + weight[depth], sumVal + val[depth], visited);
visited[depth] = false;
}
dfs(i + 1, sumWeight, sumVal);//不选择
}
public static void main(String[] args) {
int[] weight = {2, 1, 3};
int[] val = {4, 2, 3};
int capacity = 4;
Knapsack oOne = new Knapsack(weight, val, capacity);
oOne.dfs(0, 0, 0);
System.out.println(oOne.getPerfectValue());
}
}
动态规划法
分析
在考虑第n个物品时,有两种状态需要考虑。
将第n个物品不放入背包
tips: 物品数量是从0开始, n个物品则为n-1
当前物品的最大价值 = 已经放入背包中物品的最大价值
dp[n-1][c]
将第n个物品放入背包
如果放入背包,那么当前物品的价格 = 之前物品的价值+ 剩余容量物品的价值。
dp[n-1][c-weight[n-1]]+vals[n-1])
参考实现
package com.ffyc.dp;
public class KnapackDp {
public int knapack(int[] weight, int[] vals, int capacity) {
final int W = weight.length;
int[][] dp = new int[W+1][capacity+1];
for(int n = 1; n <= W;n++){
for(int c = 1; c <= capacity;c++){
if(weight[n-1] < c){
dp[n][c]= Math.max(dp[n-1][c],
dp[n-1][c-weight[n-1]]+vals[n-1]);
}
}
}
return dp[W][capacity];
}
public static void main(String[] args) {
int[] weight = {2, 1, 3};
int[] val = {4, 2, 3};
int capacity = 4;
System.out.println(new KnapackDp().knapack(weight, val, 4));
}
}