当前位置: 首页 > article >正文

mysql做数据统计图表常用的sql语句 部门人数 工龄 学历 年龄 性别 在职人员 兴趣分析查询

做统计有时候挺头疼的,sql改来改去还是达不到想要的效果,这里分享一下最近写的sql,感兴趣的朋友可以看看了解一下,sql语句代码都有注释。

这里只分享sql查询语句,前端图表用的是Echarts。

首先看一下统计的效果图

在这里插入图片描述

1、部门人员分析

SELECT
	dept.id id,
	dept.NAME key_name,
	COUNT( pe.id ) value_count,
	dept.deleted 
FROM
	system_dept dept #按部门表查询
	LEFT JOIN system_company_personal pe ON dept.id = pe.dept_id 
WHERE
	dept.id != 100 
	AND dept.STATUS = 0 
	AND dept.deleted = 0 
	AND pe.deleted = 0 
GROUP BY
	dept.id,
	dept.NAME

2、工龄分布查询(entry_time 为入职时间,格式为datetime)

SELECT-- 使用CASE语句进行条件判断,根据不同的工龄范围分类
	CASE
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 1 THEN '1年以下' 
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 1 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 3 THEN '1-3年'
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 3 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 5 THEN '3-5年'
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 5 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 10 THEN '5-10年'
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 10 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 15 THEN '10-15年'
		WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 15 THEN '15年以上' 
	END AS key_name,
	COUNT(*) AS value_count 
FROM
	system_company_personal 
WHERE
	deleted = 0 
	GROUP BY-- 按照工龄范围分组,以便统计每个范围的人数
		CASE
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 1 THEN '1年以下'
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 1 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 3 THEN '1-3年'
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 3 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 5 THEN '3-5年'
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 5 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 10 THEN '5-10年'
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 10 AND DATEDIFF( CURRENT_DATE, entry_time ) / 365 < 15 THEN '10-15年'
			WHEN DATEDIFF( CURRENT_DATE, entry_time ) / 365 >= 15 THEN '15年以上' 
		END 
	ORDER BY-- 根据工龄范围进行升序排序,这里通过自定义排序规则来实现
	FIELD( key_name, '1年以下', '1-3年', '3-5年', '5-10年', '10-15年', '15年以上' );

3、学历分布

SELECT
	CASE
		WHEN education_background_type = 0  THEN '小学'
		WHEN education_background_type = 1  THEN '初中'
		WHEN education_background_type = 2  THEN '高中'
		WHEN education_background_type = 3  THEN '大专'
		WHEN education_background_type = 4  THEN '本科'
		WHEN education_background_type = 5  THEN '硕士'
		WHEN education_background_type = 6  THEN '博士'
	END AS key_name,
	COUNT( * ) value_count
FROM
	system_company_personal
where
	education_background_type is not null and deleted = 0
GROUP BY
	education_background_type

4、年龄分布(birthday出生日期,格式为datetime)

SELECT
	-- 使用CASE语句进行条件判断,根据不同的年龄范围分类
	CASE
		WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 25 THEN '25以下'
		WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 25 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 30 THEN '26-30'
		WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 30 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 40 THEN '31-40'
		WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 40 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 50 THEN '41-50'
		WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 50 THEN '51以上'
	END AS key_name,
	COUNT(*) AS value_count
FROM
	system_company_personal
where
	birthday IS NOT NULL AND deleted = 0
	GROUP BY
		-- 按照年龄范围分组,以便统计每个范围的人数
		CASE
			WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 25 THEN '25以下'
			WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 25 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 30 THEN '26-30'
			WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 30 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 40 THEN '31-40'
			WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 40 AND TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) < 50 THEN '41-50'
			WHEN TIMESTAMPDIFF(YEAR, birthday, CURRENT_DATE) >= 50 THEN '51以上'
		END
	ORDER BY
	-- 根据年龄范围进行升序排序,这里通过自定义排序规则来实现
	FIELD(key_name, '25以下', '26-30', '31-40', '41-50', '51以上');

5、性别比例

SELECT
	CASE
		WHEN sex = 0 THEN '未知'
		WHEN sex = 1 THEN '男'
		WHEN sex = 2 THEN '女'
	END AS key_name,
	COUNT(*) AS value_count
FROM
	system_company_personal
where
	sex is not null and deleted = 0
GROUP BY sex

6、试用和正式人员

SELECT
	CASE
		WHEN status = 1 THEN '试用'
		WHEN status = 2 THEN '正式'
	END AS key_name,
	COUNT(*) AS value_count
FROM
	system_company_personal
where
	status is not null and deleted = 0 and (status = 1 or status = 2)
GROUP BY status

7、兴趣爱好分析

这条 SQL 语句的主要目的是从 system_company_personal 表中提取出每个人的兴趣爱好(存储在 hobbies 字段中,以逗号分隔的字符串形式),将这些兴趣爱好拆分后进行统计,最后找出出现次数大于等于 2 的兴趣爱好及其出现次数,并按照出现次数降序排列。

SELECT
	key_name,
	COUNT(*) AS value_count
FROM (
	 SELECT
		TRIM(SUBSTRING_INDEX(SUBSTRING_INDEX(hobbies, ',', n.n), ',', -1)) AS key_name
	 FROM
		system_company_personal
		JOIN
	 	(SELECT 1 AS n UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION SELECT 5
		UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION SELECT 10
		UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION SELECT 15) n
	where
		hobbies IS NOT NULL and deleted = 0 and (status = 1 or status = 2)
		AND LENGTH(hobbies) - LENGTH(REPLACE(hobbies, ',', '')) >= n.n - 1
) AS split_hobbies
	GROUP BY key_name
	# HAVING条件可按照自己需求该,我这里是要数量大于2的
	HAVING
			value_count >= 2
	ORDER BY
			value_count DESC;

好了,就先写到这里吧,有不理解的或者不对的欢迎各位大佬留言指正。


http://www.kler.cn/a/386382.html

相关文章:

  • 国产工作平替软件推荐
  • [Effective C++]条款48 模板元编程(TMP)
  • 游戏设备升级怎么选?RTX4070独显,ToDesk云电脑更具性价比
  • 高并发内存池_CentralCache(中心缓存)和PageCache(页缓存)申请内存的设计
  • 基于Redis实现短信验证码登录
  • Golang Gin系列-5:数据模型和数据库
  • Python-利用Pyinstaller,os库编写一个无限弹窗整蛊文件(上)
  • 家庭财务管理系统|基于java和小程序的家庭财务管理系统设计与实现(源码+数据库+文档)
  • 华为eNSP:AAA认证(pap和chap)telnet/ssh
  • 乐尚代驾十订单支付seata、rabbitmq异步消息、redisson延迟队列
  • docker网络配置:bridge模式、host模式、container模式、none模式
  • 设计模式-七个基本原则之一-接口隔离原则 + SpringBoot案例
  • 苍穹外卖的分层所用到的技术以及工具+jwt令牌流程图(jwt验证)
  • java八股第一天
  • 斑马打印机如何与工业系统(如MES、ERP、数据库等)自动化通讯?
  • 计算机网络八股文个人总结
  • 友思特应用 | 动态捕捉:高光谱相机用于移动产线上的食品检测
  • Vosk 进行中文语音识别实例
  • Java基SpringBoot+Vue的高校院系学生信息管理系统(附源码,文档)
  • //二维数组的遍历方式
  • 分布式数据库中间件mycat
  • DIP switch是什么?
  • pdb和gdb的双剑合璧,在python中调试c代码
  • [Meachines] [Medium] MonitorsThree SQLI+Cacti-CMS-RCE+Duplicati权限提升
  • 【ESP32+MicroPython】硬件控制基础
  • Python毕业设计-基于 Python flask 的前程无忧招聘可视化系统,Python大数据招聘爬虫可视化分析