python可视化将多张图整合到一起(画布)
这周有点事忙着,没时间重温刚结束的Mathurcup数学建模,这两天也是再看了下,论文还是赶紧挺烂的,但比国赛又有进步(说起国赛又不得不抱怨了,基本其余省份都发了,但江西......哎)。哎,数模就是这样,想起刚接触数模,也是参加了Mathurcup,结果。。。
咳咳,跑偏了,就这次Mathurcup而言,还是感觉到了有些乏力,毕竟平常也都不会去专门看数模,都是比赛的时候临时学,有些模型、方法还是很生。但熬了这么久,也算学到了点啥,对于我来说,我是敲代码的,思路方面不用我操心,理解他思路就行,但代码方面,我印象很深刻的就是学会了用画布,之前参考优秀论文的时候经常能看见这种图,一张图中有很多子图。类似下面这种:
其实实现也蛮简单的,下面是一个例子,也是本次Mathurcup的数据处理某个环节,具体注释也给了:
import matplotlib.pyplot as plt
import pandas as pd
i = 1
# 创建包含 8 个子图的图布
fig, axs = plt.subplots(4, 2, figsize=(12, 8)) #可调整
# 因为要为每个子图进行相同的绘图操作,可以使用 flatten() 将其转换为一维数组
axs = axs.flatten()
# 遍历文件夹中的所有文件
for j in range(140,281, 20):
file_path = f"D:\\OneDrive\\桌面\\2024Mathurcup\\附件二处理后数据\\category{j}.xlsx"
# 读取文件
df = pd.read_excel(file_path)
# 取数据
x_axis_data = df['日期']
y_axis_data = df['销量']
# 后面子图名称
line_name = f"category{j}"
axs[i - 1].plot(x_axis_data, y_axis_data, 'b*--', alpha=0.5, linewidth=1, label=line_name) # 绘制曲线
axs[i - 1].legend(loc='upper right', bbox_to_anchor=(1.05, 1), borderaxespad=0.)
# 设置 X 轴刻度
axs[i - 1].xaxis.set_major_locator(plt.MaxNLocator(nbins=5))
# 设置x轴、y轴
axs[i - 1].set_xlabel('日期', fontdict={"family": "KaiTi", "size": 15, "color": "b"})
axs[i - 1].set_ylabel('销量', fontdict={"family": "KaiTi", "size": 15, "color": "b"})
i += 1
# 自动调整子图参数,确保子图之间以及子图和标签之间的间距合理,避免重叠,从而使得图像布局更加整洁和美观。
plt.tight_layout()
plt.savefig("D:/picture_1.png")
plt.show()
运行结果如下,向这种就适合那些数据文件很多的抽样展示:
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。看啥。没有了,学习去!