Flink滑动窗口(Sliding)中window和windowAll的区别
滑动窗口的使用,主要是计算,在reduce之前添加滑动窗口,设置好间隔和所统计的时间,然后再进行reduce计算数据即可。
窗口设置好时间间隔,和处理时间窗口的时间,比如将滑动窗口的时间间隔都设置为5s,处理时间为15s,意思是每隔五秒,就处理15s秒的数据
滑动窗口(window)
比如打了3s的输入,到了第五秒的时候,滑动window开始处理15秒的数据,数据就像滑动一样,用一个线段展示。
代码展示:
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
public class Demo4Window {
public static void main(String[] args) throws Exception {
//1、创建环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//2、读取数据
DataStream<String> linesDS = env.socketTextStream("master", 8888);
//使用lambda表达式处理数据
DataStream<String> wordsDS = linesDS
.flatMap((line, out) -> {
for (String word : line.split(",")) {
out.collect(word);
}
}, Types.STRING);
DataStream<Tuple2<String, Integer>> kvDS = wordsDS
.map(word -> Tuple2.of(word, 1))
//指定返回类型
.returns(Types.TUPLE(Types.STRING, Types.INT));
KeyedStream<Tuple2<String, Integer>, String> keyByDS = kvDS.keyBy(kv -> kv.f0);
/*
* SlidingProcessingTimeWindows:滑动的处理时间窗口
*/
WindowedStream<Tuple2<String, Integer>, String, TimeWindow> windowDS = keyByDS
//每隔5秒计算最近15秒的数据
.window(SlidingProcessingTimeWindows.of(Time.seconds(15), Time.seconds(5)));
//kv1代表之前的结果(状态),kv2代码最新一条数据
//reduce:有状态计算
DataStream<Tuple2<String, Integer>> countDS = windowDS
.reduce((kv1, kv2) -> Tuple2.of(kv1.f0, kv1.f1 + kv2.f1));
countDS.print();
//execute方法会触发任务执行(任务调度)
env.execute("lambda");
}
}
滑动窗口(windowAll)
将同一个窗口的数据放在一起计算,将之前计算的结果与最新统计的结果相加
代码展示:
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
public class Demo4WindowAll {
public static void main(String[] args) throws Exception {
//1、创建环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//2、读取数据
DataStream<String> linesDS = env.socketTextStream("master", 8888);
//使用lambda表达式处理数据
DataStream<String> wordsDS = linesDS
.flatMap((line, out) -> {
for (String word : line.split(",")) {
out.collect(word);
}
}, Types.STRING);
DataStream<Tuple2<String, Integer>> kvDS = wordsDS
.map(word -> Tuple2.of(word, 1))
//指定返回类型
.returns(Types.TUPLE(Types.STRING, Types.INT));
/*
* SlidingProcessingTimeWindows:滑动的处理时间窗口
*/
AllWindowedStream<Tuple2<String, Integer>, TimeWindow> windowAllDS = kvDS
//每隔5秒计算最近15秒的数据
//windowAll:将同一个窗口的数据发一起进行计算
.windowAll(SlidingProcessingTimeWindows.of(Time.seconds(15), Time.seconds(5)));
//kv1代表之前的结果(状态),kv2代码最新一条数据
//reduce:有状态计算
DataStream<Tuple2<String, Integer>> countDS = windowAllDS
.reduce((kv1, kv2) -> Tuple2.of(kv1.f0, kv1.f1 + kv2.f1));
countDS.print();
//execute方法会触发任务执行(任务调度)
env.execute("lambda");
}
}