当前位置: 首页 > article >正文

数据与Python

【代码框1-1】—— Python模块的一些操作

# pip install pandas                   # 安装模块pandas
import numpy                         # 导入模块numpy
import numpy as np                   # 导入模块numpy并重命名为np
# conda list                           # 列出已经安装的所有模块
# conda uninstall pandas               # 从Python中彻底删除pandas模块

【代码框1-2】—— 查看Python帮助

 way1

help(sum)                               # 查看sum函数的帮助信息
help('random')                           # 查看模块random的帮助信息
Help on built-in function sum in module builtins:

sum(iterable, /, start=0)
    Return the sum of a 'start' value (default: 0) plus an iterable of numbers
    
    When the iterable is empty, return the start value.
    This function is intended specifically for use with numeric values and may
    reject non-numeric types.

Help on module random:

NAME
    random - Random variable generators.

MODULE REFERENCE
    https://docs.python.org/3.11/library/random.html
    
    The following documentation is automatically generated from the Python
    source files.  It may be incomplete, incorrect or include features that
    are considered implementation detail and may vary between Python
    implementations.  When in doubt, consult the module reference at the
    location listed above.

DESCRIPTION
        bytes
        -----
               uniform bytes (values between 0 and 255)
    
        integers
        --------
               uniform within range
    
        sequences
        ---------
               pick random element
               pick random sample
               pick weighted random sample
               generate random permutation
    
        distributions on the real line:
        ------------------------------
               uniform
               triangular
               normal (Gaussian)
               lognormal
               negative exponential
               gamma
               beta
               pareto
               Weibull
    
        distributions on the circle (angles 0 to 2pi)
        ---------------------------------------------
               circular uniform
               von Mises
    
    General notes on the underlying Mersenne Twister core generator:
    
    * The period is 2**19937-1.
    * It is one of the most extensively tested generators in existence.
    * The random() method is implemented in C, executes in a single Python step,
      and is, therefore, threadsafe.

CLASSES
    _random.Random(builtins.object)
        Random
            SystemRandom
    
    class Random(_random.Random)
     |  Random(x=None)
     |  
     |  Random number generator base class used by bound module functions.
     |  
     |  Used to instantiate instances of Random to get generators that don't
     |  share state.
     |  
     |  Class Random can also be subclassed if you want to use a different basic
     |  generator of your own devising: in that case, override the following
     |  methods:  random(), seed(), getstate(), and setstate().
     |  Optionally, implement a getrandbits() method so that randrange()
     |  can cover arbitrarily large ranges.
     |  
     |  Method resolution order:
     |      Random
     |      _random.Random
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  __getstate__(self)
     |      Helper for pickle.
     |  
     |  __init__(self, x=None)
     |      Initialize an instance.
     |      
     |      Optional argument x controls seeding, as for Random.seed().
     |  
     |  __reduce__(self)
     |      Helper for pickle.
     |  
     |  __setstate__(self, state)
     |  
     |  betavariate(self, alpha, beta)
     |      Beta distribution.
     |      
     |      Conditions on the parameters are alpha > 0 and beta > 0.
     |      Returned values range between 0 and 1.
     |  
     |  choice(self, seq)
     |      Choose a random element from a non-empty sequence.
     |  
     |  choices(self, population, weights=None, *, cum_weights=None, k=1)
     |      Return a k sized list of population elements chosen with replacement.
     |      
     |      If the relative weights or cumulative weights are not specified,
     |      the selections are made with equal probability.
     |  
     |  expovariate(self, lambd)
     |      Exponential distribution.
     |      
     |      lambd is 1.0 divided by the desired mean.  It should be
     |      nonzero.  (The parameter would be called "lambda", but that is
     |      a reserved word in Python.)  Returned values range from 0 to
     |      positive infinity if lambd is positive, and from negative
     |      infinity to 0 if lambd is negative.
     |  
     |  gammavariate(self, alpha, beta)
     |      Gamma distribution.  Not the gamma function!
     |      
     |      Conditions on the parameters are alpha > 0 and beta > 0.
     |      
     |      The probability distribution function is:
     |      
     |                  x ** (alpha - 1) * math.exp(-x / beta)
     |        pdf(x) =  --------------------------------------
     |                    math.gamma(alpha) * beta ** alpha
     |  
     |  gauss(self, mu=0.0, sigma=1.0)
     |      Gaussian distribution.
     |      
     |      mu is the mean, and sigma is the standard deviation.  This is
     |      slightly faster than the normalvariate() function.
     |      
     |      Not thread-safe without a lock around calls.
     |  
     |  getstate(self)
     |      Return internal state; can be passed to setstate() later.
     |  
     |  lognormvariate(self, mu, sigma)
     |      Log normal distribution.
     |      
     |      If you take the natural logarithm of this distribution, you'll get a
     |      normal distribution with mean mu and standard deviation sigma.
     |      mu can have any value, and sigma must be greater than zero.
     |  
     |  normalvariate(self, mu=0.0, sigma=1.0)
     |      Normal distribution.
     |      
     |      mu is the mean, and sigma is the standard deviation.
     |  
     |  paretovariate(self, alpha)
     |      Pareto distribution.  alpha is the shape parameter.
     |  
     |  randbytes(self, n)
     |      Generate n random bytes.
     |  
     |  randint(self, a, b)
     |      Return random integer in range [a, b], including both end points.
     |  
     |  randrange(self, start, stop=None, step=1)
     |      Choose a random item from range(start, stop[, step]).
     |      
     |      This fixes the problem with randint() which includes the
     |      endpoint; in Python this is usually not what you want.
     |  
     |  sample(self, population, k, *, counts=None)
     |      Chooses k unique random elements from a population sequence.
     |      
     |      Returns a new list containing elements from the population while
     |      leaving the original population unchanged.  The resulting list is
     |      in selection order so that all sub-slices will also be valid random
     |      samples.  This allows raffle winners (the sample) to be partitioned
     |      into grand prize and second place winners (the subslices).
     |      
     |      Members of the population need not be hashable or unique.  If the
     |      population contains repeats, then each occurrence is a possible
     |      selection in the sample.
     |      
     |      Repeated elements can be specified one at a time or with the optional
     |      counts parameter.  For example:
     |      
     |          sample(['red', 'blue'], counts=[4, 2], k=5)
     |      
     |      is equivalent to:
     |      
     |          sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
     |      
     |      To choose a sample from a range of integers, use range() for the
     |      population argument.  This is especially fast and space efficient
     |      for sampling from a large population:
     |      
     |          sample(range(10000000), 60)
     |  
     |  seed(self, a=None, version=2)
     |      Initialize internal state from a seed.
     |      
     |      The only supported seed types are None, int, float,
     |      str, bytes, and bytearray.
     |      
     |      None or no argument seeds from current time or from an operating
     |      system specific randomness source if available.
     |      
     |      If *a* is an int, all bits are used.
     |      
     |      For version 2 (the default), all of the bits are used if *a* is a str,
     |      bytes, or bytearray.  For version 1 (provided for reproducing random
     |      sequences from older versions of Python), the algorithm for str and
     |      bytes generates a narrower range of seeds.
     |  
     |  setstate(self, state)
     |      Restore internal state from object returned by getstate().
     |  
     |  shuffle(self, x)
     |      Shuffle list x in place, and return None.
     |  
     |  triangular(self, low=0.0, high=1.0, mode=None)
     |      Triangular distribution.
     |      
     |      Continuous distribution bounded by given lower and upper limits,
     |      and having a given mode value in-between.
     |      
     |      http://en.wikipedia.org/wiki/Triangular_distribution
     |  
     |  uniform(self, a, b)
     |      Get a random number in the range [a, b) or [a, b] depending on rounding.
     |  
     |  vonmisesvariate(self, mu, kappa)
     |      Circular data distribution.
     |      
     |      mu is the mean angle, expressed in radians between 0 and 2*pi, and
     |      kappa is the concentration parameter, which must be greater than or
     |      equal to zero.  If kappa is equal to zero, this distribution reduces
     |      to a uniform random angle over the range 0 to 2*pi.
     |  
     |  weibullvariate(self, alpha, beta)
     |      Weibull distribution.
     |      
     |      alpha is the scale parameter and beta is the shape parameter.
     |  
     |  ----------------------------------------------------------------------
     |  Class methods defined here:
     |  
     |  __init_subclass__(**kwargs) from builtins.type
     |      Control how subclasses generate random integers.
     |      
     |      The algorithm a subclass can use depends on the random() and/or
     |      getrandbits() implementation available to it and determines
     |      whether it can generate random integers from arbitrarily large
     |      ranges.
     |  
     |  ----------------------------------------------------------------------
     |  Data descriptors defined here:
     |  
     |  __dict__
     |      dictionary for instance variables (if defined)
     |  
     |  __weakref__
     |      list of weak references to the object (if defined)
     |  
     |  ----------------------------------------------------------------------
     |  Data and other attributes defined here:
     |  
     |  VERSION = 3
     |  
     |  ----------------------------------------------------------------------
     |  Methods inherited from _random.Random:
     |  
     |  getrandbits(self, k, /)
     |      getrandbits(k) -> x.  Generates an int with k random bits.
     |  
     |  random(self, /)
     |      random() -> x in the interval [0, 1).
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from _random.Random:
     |  
     |  __new__(*args, **kwargs) from builtins.type
     |      Create and return a new object.  See help(type) for accurate signature.
    
    class SystemRandom(Random)
     |  SystemRandom(x=None)
     |  
     |  Alternate random number generator using sources provided
     |  by the operating system (such as /dev/urandom on Unix or
     |  CryptGenRandom on Windows).
     |  
     |   Not available on all systems (see os.urandom() for details).
     |  
     |  Method resolution order:
     |      SystemRandom
     |      Random
     |      _random.Random
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  getrandbits(self, k)
     |      getrandbits(k) -> x.  Generates an int with k random bits.
     |  
     |  getstate = _notimplemented(self, *args, **kwds)
     |  
     |  randbytes(self, n)
     |      Generate n random bytes.
     |  
     |  random(self)
     |      Get the next random number in the range [0.0, 1.0).
     |  
     |  seed(self, *args, **kwds)
     |      Stub method.  Not used for a system random number generator.
     |  
     |  setstate = _notimplemented(self, *args, **kwds)
     |  
     |  ----------------------------------------------------------------------
     |  Methods inherited from Random:
     |  
     |  __getstate__(self)
     |      Helper for pickle.
     |  
     |  __init__(self, x=None)
     |      Initialize an instance.
     |      
     |      Optional argument x controls seeding, as for Random.seed().
     |  
     |  __reduce__(self)
     |      Helper for pickle.
     |  
     |  __setstate__(self, state)
     |  
     |  betavariate(self, alpha, beta)
     |      Beta distribution.
     |      
     |      Conditions on the parameters are alpha > 0 and beta > 0.
     |      Returned values range between 0 and 1.
     |  
     |  choice(self, seq)
     |      Choose a random element from a non-empty sequence.
     |  
     |  choices(self, population, weights=None, *, cum_weights=None, k=1)
     |      Return a k sized list of population elements chosen with replacement.
     |      
     |      If the relative weights or cumulative weights are not specified,
     |      the selections are made with equal probability.
     |  
     |  expovariate(self, lambd)
     |      Exponential distribution.
     |      
     |      lambd is 1.0 divided by the desired mean.  It should be
     |      nonzero.  (The parameter would be called "lambda", but that is
     |      a reserved word in Python.)  Returned values range from 0 to
     |      positive infinity if lambd is positive, and from negative
     |      infinity to 0 if lambd is negative.
     |  
     |  gammavariate(self, alpha, beta)
     |      Gamma distribution.  Not the gamma function!
     |      
     |      Conditions on the parameters are alpha > 0 and beta > 0.
     |      
     |      The probability distribution function is:
     |      
     |                  x ** (alpha - 1) * math.exp(-x / beta)
     |        pdf(x) =  --------------------------------------
     |                    math.gamma(alpha) * beta ** alpha
     |  
     |  gauss(self, mu=0.0, sigma=1.0)
     |      Gaussian distribution.
     |      
     |      mu is the mean, and sigma is the standard deviation.  This is
     |      slightly faster than the normalvariate() function.
     |      
     |      Not thread-safe without a lock around calls.
     |  
     |  lognormvariate(self, mu, sigma)
     |      Log normal distribution.
     |      
     |      If you take the natural logarithm of this distribution, you'll get a
     |      normal distribution with mean mu and standard deviation sigma.
     |      mu can have any value, and sigma must be greater than zero.
     |  
     |  normalvariate(self, mu=0.0, sigma=1.0)
     |      Normal distribution.
     |      
     |      mu is the mean, and sigma is the standard deviation.
     |  
     |  paretovariate(self, alpha)
     |      Pareto distribution.  alpha is the shape parameter.
     |  
     |  randint(self, a, b)
     |      Return random integer in range [a, b], including both end points.
     |  
     |  randrange(self, start, stop=None, step=1)
     |      Choose a random item from range(start, stop[, step]).
     |      
     |      This fixes the problem with randint() which includes the
     |      endpoint; in Python this is usually not what you want.
     |  
     |  sample(self, population, k, *, counts=None)
     |      Chooses k unique random elements from a population sequence.
     |      
     |      Returns a new list containing elements from the population while
     |      leaving the original population unchanged.  The resulting list is
     |      in selection order so that all sub-slices will also be valid random
     |      samples.  This allows raffle winners (the sample) to be partitioned
     |      into grand prize and second place winners (the subslices).
     |      
     |      Members of the population need not be hashable or unique.  If the
     |      population contains repeats, then each occurrence is a possible
     |      selection in the sample.
     |      
     |      Repeated elements can be specified one at a time or with the optional
     |      counts parameter.  For example:
     |      
     |          sample(['red', 'blue'], counts=[4, 2], k=5)
     |      
     |      is equivalent to:
     |      
     |          sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
     |      
     |      To choose a sample from a range of integers, use range() for the
     |      population argument.  This is especially fast and space efficient
     |      for sampling from a large population:
     |      
     |          sample(range(10000000), 60)
     |  
     |  shuffle(self, x)
     |      Shuffle list x in place, and return None.
     |  
     |  triangular(self, low=0.0, high=1.0, mode=None)
     |      Triangular distribution.
     |      
     |      Continuous distribution bounded by given lower and upper limits,
     |      and having a given mode value in-between.
     |      
     |      http://en.wikipedia.org/wiki/Triangular_distribution
     |  
     |  uniform(self, a, b)
     |      Get a random number in the range [a, b) or [a, b] depending on rounding.
     |  
     |  vonmisesvariate(self, mu, kappa)
     |      Circular data distribution.
     |      
     |      mu is the mean angle, expressed in radians between 0 and 2*pi, and
     |      kappa is the concentration parameter, which must be greater than or
     |      equal to zero.  If kappa is equal to zero, this distribution reduces
     |      to a uniform random angle over the range 0 to 2*pi.
     |  
     |  weibullvariate(self, alpha, beta)
     |      Weibull distribution.
     |      
     |      alpha is the scale parameter and beta is the shape parameter.
     |  
     |  ----------------------------------------------------------------------
     |  Class methods inherited from Random:
     |  
     |  __init_subclass__(**kwargs) from builtins.type
     |      Control how subclasses generate random integers.
     |      
     |      The algorithm a subclass can use depends on the random() and/or
     |      getrandbits() implementation available to it and determines
     |      whether it can generate random integers from arbitrarily large
     |      ranges.
     |  
     |  ----------------------------------------------------------------------
     |  Data descriptors inherited from Random:
     |  
     |  __dict__
     |      dictionary for instance variables (if defined)
     |  
     |  __weakref__
     |      list of weak references to the object (if defined)
     |  
     |  ----------------------------------------------------------------------
     |  Data and other attributes inherited from Random:
     |  
     |  VERSION = 3
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from _random.Random:
     |  
     |  __new__(*args, **kwargs) from builtins.type
     |      Create and return a new object.  See help(type) for accurate signature.

FUNCTIONS
    betavariate(alpha, beta) method of Random instance
        Beta distribution.
        
        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.
    
    choice(seq) method of Random instance
        Choose a random element from a non-empty sequence.
    
    choices(population, weights=None, *, cum_weights=None, k=1) method of Random instance
        Return a k sized list of population elements chosen with replacement.
        
        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.
    
    expovariate(lambd) method of Random instance
        Exponential distribution.
        
        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.
    
    gammavariate(alpha, beta) method of Random instance
        Gamma distribution.  Not the gamma function!
        
        Conditions on the parameters are alpha > 0 and beta > 0.
        
        The probability distribution function is:
        
                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha
    
    gauss(mu=0.0, sigma=1.0) method of Random instance
        Gaussian distribution.
        
        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.
        
        Not thread-safe without a lock around calls.
    
    getrandbits(k, /) method of Random instance
        getrandbits(k) -> x.  Generates an int with k random bits.
    
    getstate() method of Random instance
        Return internal state; can be passed to setstate() later.
    
    lognormvariate(mu, sigma) method of Random instance
        Log normal distribution.
        
        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.
    
    normalvariate(mu=0.0, sigma=1.0) method of Random instance
        Normal distribution.
        
        mu is the mean, and sigma is the standard deviation.
    
    paretovariate(alpha) method of Random instance
        Pareto distribution.  alpha is the shape parameter.
    
    randbytes(n) method of Random instance
        Generate n random bytes.
    
    randint(a, b) method of Random instance
        Return random integer in range [a, b], including both end points.
    
    random() method of Random instance
        random() -> x in the interval [0, 1).
    
    randrange(start, stop=None, step=1) method of Random instance
        Choose a random item from range(start, stop[, step]).
        
        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.
    
    sample(population, k, *, counts=None) method of Random instance
        Chooses k unique random elements from a population sequence.
        
        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).
        
        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.
        
        Repeated elements can be specified one at a time or with the optional
        counts parameter.  For example:
        
            sample(['red', 'blue'], counts=[4, 2], k=5)
        
        is equivalent to:
        
            sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
        
        To choose a sample from a range of integers, use range() for the
        population argument.  This is especially fast and space efficient
        for sampling from a large population:
        
            sample(range(10000000), 60)
    
    seed(a=None, version=2) method of Random instance
        Initialize internal state from a seed.
        
        The only supported seed types are None, int, float,
        str, bytes, and bytearray.
        
        None or no argument seeds from current time or from an operating
        system specific randomness source if available.
        
        If *a* is an int, all bits are used.
        
        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1 (provided for reproducing random
        sequences from older versions of Python), the algorithm for str and
        bytes generates a narrower range of seeds.
    
    setstate(state) method of Random instance
        Restore internal state from object returned by getstate().
    
    shuffle(x) method of Random instance
        Shuffle list x in place, and return None.
    
    triangular(low=0.0, high=1.0, mode=None) method of Random instance
        Triangular distribution.
        
        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.
        
        http://en.wikipedia.org/wiki/Triangular_distribution
    
    uniform(a, b) method of Random instance
        Get a random number in the range [a, b) or [a, b] depending on rounding.
    
    vonmisesvariate(mu, kappa) method of Random instance
        Circular data distribution.
        
        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.
    
    weibullvariate(alpha, beta) method of Random instance
        Weibull distribution.
        
        alpha is the scale parameter and beta is the shape parameter.

DATA
    __all__ = ['Random', 'SystemRandom', 'betavariate', 'choice', 'choices...

FILE
    d:\python\lib\random.py

way2

import random                           # 导入random模块
help(random)                            # 查看模块random的信息
help(random.gauss)                       # 查看模块random中gauss函数的信息

【代码框1-3】—— 对象赋值

import pandas as pd                   # 导入模块pandas并重命名为pd
x = [80,87,98,73,100]               # 将5个数据组成的列表赋值给对象x
example1_1 = pd.DataFrame(x)        # 将对象x转换为数据框并赋值给对象example1_1
d = example1_1                      # 将数据框example1_1赋值给对象d
s=sum(x)                            # 计算对象x的总和并赋值给对象s
n=len(x)                            # 计算对象x 的元素个数并赋值给对象n
m=s/n                               # 计算对象x 的平均数并赋值给对象m
print('x',x)                            # 输出对象x                
print('example1_1',example1_1)                      # 输出对象example1_1
print('d',d)                            # 输出对象d
print('s',s)                            # 输出对象s
print('n',n)                            # 输出对象n
print('m',m)                            # 输出对象m
x [80, 87, 98, 73, 100]
======================
example1_1      0
0               80
1               87
2               98
3               73
4               100
====================
d               0
0               80
1               87
2               98
3               73
4               100
===================
s 438
===================
n 5
===================
m 87.6

【代码框1-4】—— 读取csv格式数据 

way1 读取编码格式为“UTF-8”的csv格式的数据(table1)

# 读取编码格式为“UTF-8”的csv格式的数据(table1)
import pandas as pd
table1 = pd.read_csv("./pydata/example/chap01/table1.csv", encoding='utf-8')
                                                 # 默认编码格式为UTF-8(可小写)
# 或省略参数encoding
table1 = pd.read_csv("./pydata/example/chap01/table1.csv")  # 默认,可省略参数
table1

 way2 读取编码格式为”GBK”的csv格式的数据(table2)

# 读取编码格式为”GBK”的csv格式的数据(table2)
import pandas as pd
table2 = pd.read_csv("./pydata/example/chap01/table2.csv", encoding='gbk')
table2

 way3 读取excel格式的数据

# 读取excel格式的数据
import pandas as pd
df = pd.read_excel("./pydata/example/chap01/table3.xlsx")  # 读取数据并重命名为df
df

【代码框1-5】——数据保存

way1 将table1保存成编码格式为UTF-8的csv格式,并存放在指定的路径中


import pandas as pd   # 加载模块
table1 = pd.read_csv("./pydata/example/chap01/table1.csv",encoding='utf-8') 
table1.to_csv("./pydata/example/chap01/df1.csv",index=False, encoding='utf-8') 
                  # 将table1保存在指定的目录下,并命名为df1,编码格式为utf-8

way2  将table1保存成编码格式为GBK的csv格式,并存放在指定的路径中


table1.to_csv("./pydata/example/chap01/df2.csv",index=False, encoding='gbk') 
                    # 将table1保存在指定的目录下,并命名为df2,编码格式为gbk

way3 将table1保存成xlsx格式,并存放在指定的路径中


table1.to_excel("./pydata/example/chap01/df3.xlsx", index=False)
                        # 将table1保存在指定的目录下,并命名为df3

注:
    两种方法的index参数默认为True,设置为False表示不保存行索引,encoding选择文件编码形式。建议保存为'GBK'编码的csv格式,或保存为xlsx格式,否则在Excel中打开数据会出现乱码。


http://www.kler.cn/a/388237.html

相关文章:

  • 品融电商:新形势下电商平台如何助力品牌长期经营
  • Linux手动安装nginx
  • AI写作(四)预训练语言模型:开启 AI 写作新时代(4/10)
  • 量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
  • 低功耗WTK6900P语音ic方案助力电子烟技术革新 打造个性化吸烟体验
  • 16008.行为树(五)-自定义数据指针在黑板中的传递
  • 企业内部知识库搭建工具精选
  • 用js去除变量里的html标签
  • Android gradle下载失败后 解决方案
  • python在车载电子测试方面的应用
  • uniapp—android原生插件开发(1环境准备)
  • 深度学习:微调(Fine-tuning)详解
  • 蓝牙规范系列--属性协议(基础篇)
  • Pytorch学习--神经网络--网络模型的保存与读取
  • Java毕业设计-----基于AIGC的智能客服系统
  • [LInux] 进程地址空间
  • Android 14 SPRD 下拉菜单中增加自动亮度调节按钮
  • 鸿蒙系统:智能设备新时代的技术驱动
  • MySQL:数据类型建表
  • system generator结合高版本matlab的使用
  • 【Linux】进程创建/等待/替换相关知识详细梳理
  • 查缺补漏----用户上网过程(HTTP,DNS与ARP)
  • 信息安全工程师(79)网络安全测评概况
  • 架构师备考-架构基本概念
  • Diving into the STM32 HAL-----DMA笔记
  • 【科普小白】LLM大语言模型的基本原理