当前位置: 首页 > article >正文

分享三个python爬虫案例

一、爬取豆瓣电影排行榜Top250存储到Excel文件


        近年来,Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程序,用于抓取豆瓣电影Top250的相关信息,并将其保存为Excel文件。

获取网页数据的函数,包括以下步骤:
1. 循环10次,依次爬取不同页面的信息;
2. 使用`urllib`获取html页面;
3. 使用`BeautifulSoup`解析页面;
4. 遍历每个div标签,即每一部电影;
5. 对每个电影信息进行匹配,使用正则表达式提取需要的信息并保存到一个列表中;
6. 将每个电影信息的列表保存到总列表中。

        效果展示:


        源代码:

from bs4 import BeautifulSoup
import  re  #正则表达式,进行文字匹配
import urllib.request,urllib.error #指定URL,获取网页数据
import xlwt  #进行excel操作
 
 
def main():
    baseurl = "https://movie.douban.com/top250?start="
    datalist= getdata(baseurl)
    savepath = ".\\豆瓣电影top250.xls"
    savedata(datalist,savepath)
 
#compile返回的是匹配到的模式对象
findLink = re.compile(r'<a href="(.*?)">')  # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # re.S让换行符包含在字符中,图片信息
findTitle = re.compile(r'<span class="title">(.*)</span>')  # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')  # 找到评分
findJudge = re.compile(r'<span>(\d*)人评价</span>')  # 找到评价人数 #\d表示数字
findInq = re.compile(r'<span class="inq">(.*)</span>')  # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)  # 找到影片的相关内容,如导演,演员等
 
 
 
##获取网页数据
def  getdata(baseurl):
    datalist=[]
    for i in range(0,10):
        url = baseurl+str(i*25)     ##豆瓣页面上一共有十页信息,一页爬取完成后继续下一页
        html = geturl(url)
        soup = BeautifulSoup(html,"html.parser") #构建了一个BeautifulSoup类型的对象soup,是解析html的
        for item in soup.find_all("div",class_='item'): ##find_all返回的是一个列表
            data=[]  #保存HTML中一部电影的所有信息
            item = str(item) ##需要先转换为字符串findall才能进行搜索
            link = re.findall(findLink,item)[0]  ##findall返回的是列表,索引只将值赋值
            data.append(link)
 
            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)
 
            titles=re.findall(findTitle,item)  ##有的影片只有一个中文名,有的有中文和英文
            if(len(titles)==2):
                onetitle = titles[0]
                data.append(onetitle)
                twotitle = titles[1].replace("/","")#去掉无关的符号
                data.append(twotitle)
            else:
                data.append(titles)
                data.append(" ")  ##将下一个值空出来
 
            rating = re.findall(findRating, item)[0]  # 添加评分
            data.append(rating)
 
            judgeNum = re.findall(findJudge, item)[0]  # 添加评价人数
            data.append(judgeNum)
 
            inq = re.findall(findInq, item)  # 添加概述
            if len(inq) != 0:
                inq = inq[0].replace("。", "")
                data.append(inq)
            else:
                data.append(" ")
 
            bd = re.findall(findBd, item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd)
            bd = re.sub('/', " ", bd)
            data.append(bd.strip())  # 去掉前后的空格
            datalist.append(data)
    return  datalist
 
##保存数据
def  savedata(datalist,savepath):
    workbook = xlwt.Workbook(encoding="utf-8",style_compression=0) ##style_compression=0不压缩
    worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True) #cell_overwrite_ok=True再次写入数据覆盖
    column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")  ##execl项目栏
    for i in range(0,8):
        worksheet.write(0,i,column[i]) #将column[i]的内容保存在第0行,第i列
    for i in range(0,250):
        data = datalist[i]
        for j in range(0,8):
            worksheet.write(i+1,j,data[j])
    workbook.save(savepath)
 
 
##爬取网页
def geturl(url):
    head = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                      "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"
    }
    req = urllib.request.Request(url,headers=head)
    try:   ##异常检测
     response = urllib.request.urlopen(req)
     html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e,"code"):    ##如果错误中有这个属性的话
            print(e.code)
        if hasattr(e,"reason"):
            print(e.reason)
    return html
 
if __name__ == '__main__':
    main()
    print("爬取成功!!!")


二、爬取百度热搜排行榜Top50+可视化


 2.1  代码思路:

导入所需的库:



import requests
from bs4 import BeautifulSoup
import openpyxl

BeautifulSoup 库用于解析HTML页面的内容。

openpyxl 库用于创建和操作Excel文件。

 2.发起HTTP请求获取百度热搜页面内容:

url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content


这里使用了 requests.get() 方法发送GET请求,并将响应的内容赋值给变量 html。

        3.使用BeautifulSoup解析页面内容:

soup = BeautifulSoup(html, 'html.parser')


创建一个 BeautifulSoup 对象,并传入要解析的HTML内容和解析器类型。

   4.提取热搜数据:

hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
    hot_searches.append(item.text)


这段代码通过调用 soup.find_all() 方法找到所有 <div> 标签,并且指定 class 属性为 'c-single-text-ellipsis' 的元素。

然后,将每个元素的文本内容添加到 hot_searches 列表中。
 

  5.保存热搜数据到Excel:

workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'


使用 openpyxl.Workbook() 创建一个新的工作簿对象。

调用 active 属性获取当前活动的工作表对象,并将其赋值给变量 sheet。

使用 title 属性给工作表命名为 'Baidu Hot Searches'。

        6.设置标题:

sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:郭wes代码')


使用 cell() 方法选择要操作的单元格,其中 row 和 column 参数分别表示行和列的索引。

将标题字符串 '百度热搜排行榜—博主:郭wes代码' 写入选定的单元格。

        7.写入热搜数据:

for i in range(len(hot_searches)):
    sheet.cell(row=i+2, column=1, value=hot_searches[i])


使用 range() 函数生成一个包含索引的范围,循环遍历 hot_searches 列表。

对于每个索引 i,使用 cell() 方法将对应的热搜词写入Excel文件中。

        8.保存Excel文件:

workbook.save('百度热搜.xlsx')


使用 save() 方法将工作簿保存到指定的文件名 '百度热搜.xlsx'。

        9.输出提示信息:

print('热搜数据已保存到 百度热搜.xlsx')


在控制台输出保存成功的提示信息。

源代码

 
import requests
from bs4 import BeautifulSoup
import openpyxl
 
# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content
 
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')
 
# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
    hot_searches.append(item.text)
 
# 保存热搜数据到Excel
workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'
 
# 设置标题
sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:郭wes代码')
 
# 写入热搜数据
for i in range(len(hot_searches)):
    sheet.cell(row=i+2, column=1, value=hot_searches[i])
 
workbook.save('百度热搜.xlsx')
print('热搜数据已保存到 百度热搜.xlsx')

 

 

 可视化代码:

        

import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
 
# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content
 
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')
 
# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
    hot_searches.append(item.text)
 
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
 
# 绘制条形图
plt.figure(figsize=(15, 10))
x = range(len(hot_searches))
y = list(reversed(range(1, len(hot_searches)+1)))
plt.barh(x, y, tick_label=hot_searches, height=0.8)  # 调整条形图的高度
 
# 添加标题和标签
plt.title('百度热搜排行榜')
plt.xlabel('排名')
plt.ylabel('关键词')
 
# 调整坐标轴刻度
plt.xticks(range(1, len(hot_searches)+1))
 
# 调整条形图之间的间隔
plt.subplots_adjust(hspace=0.8, wspace=0.5)
 
# 显示图形
plt.tight_layout()
plt.show()

 三、爬取酷狗音乐Top500排行榜

          从酷狗音乐排行榜中提取歌曲的排名、歌名、歌手和时长等信息

总体思路:

import requests  # 发送网络请求,获取 HTML 等信息
from bs4 import BeautifulSoup  # 解析 HTML 信息,提取需要的信息
import time  # 控制爬虫速度,防止过快被封IP
 
 
headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"
    # 添加浏览器头部信息,模拟请求
}
 
def get_info(url):
    # 参数 url :要爬取的网页地址
    web_data = requests.get(url, headers=headers)  # 发送网络请求,获取 HTML 等信息
    soup = BeautifulSoup(web_data.text, 'lxml')  # 解析 HTML 信息,提取需要的信息
 
    # 通过 CSS 选择器定位到需要的信息
    ranks = soup.select('span.pc_temp_num')
    titles = soup.select('div.pc_temp_songlist > ul > li > a')
    times = soup.select('span.pc_temp_tips_r > span')
    
    # for 循环遍历每个信息,并将其存储到字典中
    for rank, title, time in zip(ranks, titles, times):
        data = {
            "rank": rank.get_text().strip(),  # 歌曲排名
            "singer": title.get_text().replace("\n", "").replace("\t", "").split('-')[1],  # 歌手名
            "song": title.get_text().replace("\n", "").replace("\t", "").split('-')[0],  # 歌曲名
            "time": time.get_text().strip()  # 歌曲时长
        }
        print(data)  # 打印获取到的信息
 
if __name__ == '__main__':
    urls = ["https://www.kugou.com/yy/rank/home/{}-8888.html".format(str(i)) for i in range(1, 24)]
    # 构造要爬取的页面地址列表
    for url in urls:
        get_info(url)  # 调用函数,获取页面信息
        time.sleep(1)  # 控制爬虫速度,防止过快被封IP

 


http://www.kler.cn/a/389472.html

相关文章:

  • 我的创作纪念日,纪念我的第512天
  • Linux TCP 之 RTT 采集与 RTO 计算
  • 审计文件标识作为水印打印在pdf页面边角
  • 什么样的问题适合用递归
  • Linux——入门基本指令汇总
  • 鸿蒙开发中的骨架图:提升用户体验的关键一环
  • ServletContext介绍
  • 别再为视频转文字烦恼啦!这10个转换工具帮你一键搞定。
  • UE5 随机生成地牢关卡
  • Python酷库之旅-第三方库Pandas(206)
  • 信息安全数学基础(47)域的结构
  • 浔川 AI 翻译 v5.0 上线时间相关公告
  • canal配置之一:admin配置
  • 手边酒店多商户版V2源码独立部署_博纳软云
  • 多智能体系统的构建
  • C++线程
  • 【大数据学习 | kafka高级部分】kafka的快速读写
  • 道品科技水肥一体化在农业生产中的必要性与应用领域探讨
  • 微服务架构面试内容整理-消息驱动-RocketMQ
  • redis RDB持久化技术
  • mysql第二次作业---单表和多表查询
  • Rust性能优化与调试之性能基准测试
  • 如何使用SparkSQL在hive中使用Spark的引擎计算
  • 全网最详细的自动化测试(Jenkins 篇)
  • 企业知识库管理系统的创新模式及其智能化转型
  • 45期代码随想录算法营总结