LlamaIndex RAG实践 | 书生大模型
文章目录
- 浦语 API + LlamaIndex 实践
- 配置基础环境
- 下载 Sentence Transformer 模型
- 下载 NLTK(自然语言处理包)相关资源
- 不使用 LlamaIndex RAG
- 使用 LlamaIndex
- 本地部署 InternLM + LlamaIndex 实践
- 安装依赖包
- 本地准备 InternLM
- 测试代码
- LlamaIndex web
- 安装依赖
- 创建`app.py`
- 运行代码
- 测试
- 参考文献
浦语 API + LlamaIndex 实践
配置基础环境
创建新的 conda 环境,命名为llamaindex
conda create -n llamaindex python=3.10
# 查看本地环境
conda env list
安装依赖包:
conda activate llamaindex
# 安装 python 依赖包
pip install einops==0.7.0 protobuf==5.26.1
# 安装 LlamaIndex 和相关的包
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
下载 Sentence Transformer 模型
源词向量模型 Sentence Transformer 相对轻量、支持中文且效果较好
也可以选用别的开源词向量模型来进行 Embedding
运行以下指令,新建一个python文件:
mkdir llamaindex_demo
mkdir model
cd llamaindex_demo
touch download_hf.py
打开 download_hf.py
贴入以下代码:
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
然后,在 llamaindex_demo
目录下执行脚本:
python download_hf.py
下载 NLTK(自然语言处理包)相关资源
在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk
的一些资源
正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上
可以用以下命令下载 nltk
资源并解压到服务器上:
cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip
之后使用时服务器即会自动使用已有资源,无需再次下载
不使用 LlamaIndex RAG
创建测试文件:
touch test_internlm.py
代码文件内容如下:
from openai import OpenAI
base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
api_key = "sk-请填写准确的 token!"
model="internlm2.5-latest"
# base_url = "https://api.siliconflow.cn/v1"
# api_key = "sk-请填写准确的 token!"
# model="internlm/internlm2_5-7b-chat"
client = OpenAI(
api_key=api_key ,
base_url=base_url,
)
chat_rsp = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "xtuner是什么?"}],
)
for choice in chat_rsp.choices:
print(choice.message.content)
运行结果:
使用 LlamaIndex
获取数据源:
cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
创建代码文件:
cd ~/llamaindex_demo
touch llamaindex_RAG.py
代码文件内容如下:
import os
os.environ['NLTK_DATA'] = '/root/nltk_data'
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike
# Create an instance of CallbackManager
callback_manager = CallbackManager()
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"
# api_base_url = "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model
#初始化llm
Settings.llm = llm
#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print(response)
- Settings:用于全局设置
- llm 的调用并不是通过直接的方法调用实现的,而是通过
llama_index
库的内部机制来使用的 - llm 被设置为 Settings 的一个属性。这样设置后,llm 就会被
llama_index
库在需要的时候自动使用
测试结果:
本地部署 InternLM + LlamaIndex 实践
安装依赖包
pip install llama-index-llms-huggingface
pip install llama-index-llms-huggingface-api
pip install sentencepiece
本地准备 InternLM
如果使用 InternSudio 平台,这里可以直接在共享文件夹里找到 InterLM 模型,无需下载,直接创建软连接:
cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
测试代码
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model
llm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code":True},
tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm
#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print(response)
测试结果:
LlamaIndex web
安装依赖
**Streamlit 是一个用于快速创建数据应用程序的 Python 库。 **
它提供了一种简单而直观的方式来构建交互式 Web 应用,这些应用可以展示数据可视化、接受用户输入,并实时更新显示结果。
pip install streamlit==1.36.0
创建app.py
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")
# 初始化模型
@st.cache_resource
def init_models():
embed_model = HuggingFaceEmbedding(
model_name="/root/model/sentence-transformer"
)
Settings.embed_model = embed_model
llm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code": True},
tokenizer_kwargs={"trust_remote_code": True}
)
Settings.llm = llm
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
return query_engine
# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_models()
def greet2(question):
response = st.session_state['query_engine'].query(question)
return response
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
return greet2(prompt_input)
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
运行代码
streamlit run app.py
测试
参考文献
https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/LlamaIndex/readme.md