【数字静态时序分析】复杂时钟树的时序约束SDC写法
以上图为例,SoC芯片上往往存在几种不同的时钟源,有pll时钟、环振时钟、外部的晶振时钟,在SoC不同的模块或者不同的运行阶段使用的时钟也往往不同,所以在使用的时候,相同的模块会出现选择不同的时钟源的情况。上图的情形就会出现。这里先不展开各个时钟源之间的区别,也不展开clk_mux和div的设计因为还没写哈哈,但是可以去看我clk_gate的那一篇了解下clk_gate。【数字】一篇文章读懂数字芯片中的时钟门控单元/时序/ICG/clk gater-CSDN博客
进入对上述结构的sdc约束:
//进行时钟创建约束
//假设rco、HXT 50M,pll 200M,sleep 32K,LXT 32.768K
//-period表示时钟周期,waveform表示占空比,get_ports指明端口名
create_clock -name rco -period 20 -waveform {0 10} [get_ports rco]
create_clock -name HXT -period 20 -waveform {0 10} [get_ports HXT]
create_clock -name pll -period 5 -waveform {0 10} [get_ports pll]
create_clock -name LXT -period 30517 -waveform {0 15258} [get_ports LXT]
create_clock -name sleep -period 31250 -waveform {0 15625} [get_ports sleep]
//设置时钟的uncertainty
...
set_clock_uncertainty -setup/-hold [period 10%] [get_clocks rco]
...
至此第一步成功设立,以M0这个mux为例,创建mux两侧的clock,这些clock是源自rco或者HXT的所以需要使用generated clk,创建generated clk的原则是需要使用就近原则,-source的时候需要选择靠近的clk。
//创建M0前的clk,因为实际电路中需要进行SI的分析,需要将这种clk声明出来
//因为将generated clock创建在了不同的pins上,这样可以确保这些generated clock的source latency都是来自指定的位置,保证正确的时序分析
create_generated_clock -name m0_rco_a -source [get_ports rco] -divide 1 [get_pins m0/A]
create_generated_clock -name m0_HXT_b -source [get_ports HXT] -divide 1 [get_pins m0/B]
//创建M0 output上的clk
create_generated_clock -name m0_rco_z -divide 1 m0/z -source m0/A -master_clock m0_rco_a -add
create_generated_clock -name m0_HXT_z -divide 1 m0/z -source m0/B -master_clock m0_HXT_b -add
//设置logically_exclusive之后能保证这样的时钟线,实际布局的时候会摆放的比较远
set_clock_groups -logically_exclusive -group {m0_rco_a} -group {m0_HXT_b}
//M0后的时钟不会同时出现,所以是物理互斥的
set_clock_groups -physically_exclusive -group {m0_rco_z} -group {m0_HXT_z}
那按照这样的设置我们成功的把M0左右两端的时钟约束成功了!
那现在时钟传播到M2上,对M2进行clock约束。
//M2的A端,这个时候有2个clk已经在之前定义了,M2的B端是PLL的时钟,直接创建MUXed之后的时钟
create_generated_clock -name m2_rco_z -divide 1 m2/z -source m2/A -master_clock m0_rco_z -add
create_generated_clock -name m2_HXT_z -divide 1 m2/z -source m2/A -master_clock m0_HXT_z -add
create_generated_clock -name m2_pll_z -divide 1 m2/z -source m2/B -master_clock pll -add
//声明物理互斥
set_clock_group -physically_exclusive -group {m2_rco_z} -group {m2_HXT_z} -group {m2_pll_z}
set_clock_group -logically_exclusive -group {pll} -group {m0_rco_z}
set_clock_group -logically_exclusive -group {pll} -group {m0_HXT_z}
按照这个规律同理我们能得到M1前后的clock,M3前后的clock,最终我们会在M3的Z端得到5个物理互斥的时钟,m3_rco_z,m3_HXT_z,m3_pll_z,m3_sleep_z,m3_LXT_z。
那如果经过DIV之后的DFF需要设置set_output_delay这种输出约束,-clock应该设置在上述哪一个时钟上呢?
因为M3的Z端的时钟必定只有一个输出出去,并且有可能不同情况下输出的时钟频率也不同,可以使用set_case_analysis来指定M0~M3的选择情况,以使用rco为例,sel0~sel3可以是0X00。
set_case_analysis 0 [get_ports {m0/sel m2/sel m3/sel}]
set_case_analysis 1 [get_ports {m1/sel}]
那在DIV之前加一个buf的目的是什么呢?
为了改名!
以m3_rco_z为例,set_output_delay -get_port A -clock m3_rco_z,那如果DIV后的时钟在使用m3_pll_z的时候驱动的是B,那B那边的约束就要把-clock 后面改成m3_pll_z,这样未免有些麻烦,所以用一个buf在那里将名字更改成同一个但是case不同source源不同,这样写不同模块的SDC约束的时候就可以简化很多。
经过分频器之后假设分频系数是3分频,且经过buf的clk为clk_buf
//经过buf的clk
create_generated_clock -name clk_buf -divide 1 buf/Q -source buf/D -master m3_rco_z
//经过分频之后的clk
create_generated_clock -name clk_div -divide 3 div/Q -source div/CK -master clk_buf
另外需要强调的是在设置-asynchronous时
set_clock_groups -asynchronous -group {rco x0} -group {HXT x1}
set_clock_groups -asynchronous -group {rco a0} -group {HXT a1}
x0和a0之间工具仍然会分析,并没认为他们是异步的还需要声明x0与a0的异步关系才能消除工具的分析。
set_clock_groups -asynchronous -group x0 -group a0