当前位置: 首页 > article >正文

基于Zynq FPGA对雷龙SD NAND的测试

一、SD NAND 特征

1.1 SD 卡简介

雷龙的 SD NAND 有很多型号,在测试中使用的是 CSNP4GCR01-AMW 与 CSNP32GCR01-AOW。芯片是基于 NAND FLASH 和 SD 控制器实现的 SD 卡。具有强大的坏块管理和纠错功能,并且在意外掉电的情况下同样能保证数据的安全。

其特点如下:

  • 接口支持 SD2.0 2 线或 4 线;

  • 电压支持:2.7V-3.6V;

  • 默认模式: 可变时钟速率 0 - 25MHz,高达 12.5 MB/s 的接口速度 (使用 4 条并行数据线)

  • 高速模式: 可变时钟速率 0 - 50MHz,高达 25 MB/s 的接口速度 (使用 4 条并行数据线)

  • 工作温度:-40°C ~ +85°C

  • 存储温度:-55°C ~ +125°C

  • 待机电流小于 250uA

  • 修正内存字段错误;

  • 内容保护机制——符合 SDMI 最高安全标准

  • SDNAND 密码保护 (CMD42 - LOCK_UNLOCK)

  • 采用机械开关的写保护功能

  • 内置写保护功能 (永久和临时)

  • 应用程序特定命令

  • 舒适擦除机制

该 SD 卡支持 SDIO 读写和 SPI 读写,最高读写速度可达 25MB/s,实际读写速度要结合 MCU 和接口情况实测获得。通常在简单嵌入式系统并对读写速度要求不高的情况下,会使用 SPI 协议进行读写。但不管使用 SDIO 还是 SPI 都需要符合相关的协议规范,才能建立相应的文件系统;

1.2 SD 卡 Block 图

该 SD 卡封装为 LGA-8;引脚分配与定义如下;在这里插入图片描述:

image-20241106234505040

二、SD 卡样片

与样片同时寄来的还有转接板,转接板将 LGA-8 封装的芯片转接至 SD 卡封装,这样只需将转接板插入 SD 卡卡槽即可使用。

在这里插入图片描述:

image-20241106234515418

三、Zynq 测试平台搭建

  • 测试平台为 Xilinx 的 Zynq 7020 FPGA 芯片;

  • 板卡:Digilent Zybo Z7

  • Vivado 版本:2018.3

  • 文件系统:FATFS

  • SD 卡接口:SD2.0

3.1 测试流程

本次测试主要针对 4G 和 32G 两个不同容量的 SD 卡,在 Zynq FPGA 上搭建 SD 卡读写回路,从而对 SD 卡读写速度进行测试,并检验读写一致性;

测试流程:

进入测试程序前,首先会对 SD 卡初始化并初始化建立 FATFS 文件系统,随后进入测试 SD 卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复 100 次并打印报告。

image-20241106234559529

3.2 SOC 搭建

硬件搭建框图如下,我们在本次系统中使用 PS 端的 SDIO 接口来驱动 SD NAND 芯片,并通过 UART 向 PC 打印报告;

PL 端的硬件搭建也很简单,只需一个 Timer 定时器来做时间测量;

image-20241106234609128

我们直接使用 Zybo 板卡文件创建一个工程,工程会将 Zybo 具有的硬件资源配置好;

image-20241106234649694

首先点击 setting->IP->Repository->+;添加 Timer IP 核的路径,Timer IP 核会在工程中给出;

image-20241106234708383

点击 Create Block Design 创建 BD 工程

image-20241106234719321

在创建的过程中添加 Zynq 内核;

image-20241106234728015

由于我们使用了板卡文件,所以内核 IP 是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置 DDR 等配置;

双击内核 IP,点击 Clock Configuration->PL Fabric Clocks,将 FCLK_CLK0 的时钟频率修改为 100Mhz

添加 TimerA IP;

依次点击上方的自动设计,完成 SOC 搭建;

点击 BD 设计,并创建顶层文件

image-20241106235231159

生成比特流文件;

image-20241106235241703

在生成比特流文件后,将其导入 SDK;

点击 Export->Export Hardware,导出硬件;然后点击 Launch SDK 打开 SDK 进行软件设计;

image-20241106235309720

image-20241106235320866

四、软件搭建

在 SDK 中新建一个空白工程;

点击 file -> new -> Application project;

image-20241106235332805

在新建的过程中创建一个 main.c 文件,并在里面编写测试程序如下:

在每次读写开始前,通过 TimerA0_start() 函数开始计时,在读写结束后可以通过 TimerA0_stop() 结束计时,从而测得消耗时间。

相应的 Timer 驱动函数在 user/TimerA_user.c 中定义;

#include "xparameters.h" /_ SDK generated parameters _/
#include "xsdps.h" /_ SD device driver _/
#include "xil_printf.h"
#include "ff.h"
#include "xil_cache.h"
#include "xplatform_info.h"
#include "time.h"
#include "../user/headfile.h"
#define PACK_LEN 32764
static FIL fil; /_ File object _/
static FATFS fatfs;
static char FileName[32] = "Test.txt";
static char \*SD_File;
char DestinationAddress[PACK_LEN] ;
char txt[1024];
char test_buffer[PACK_LEN];
void TimerA0_init()
{
    TimerA_reset(TimerA0);//reset timerA device
    TimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1Mhz
    TimerA_Stop_Counter(TimerA0);//stop timerA
}
void TimerA0_start()
{
    TimerA_SetAs_CONTINUS_Mode(TimerA0);
}
void TimerA0_stop()
{
    TimerA_Stop_Counter(TimerA0);
}
uint32 SDCard_test()
{
    uint8 Res;
    uint32 NumBytesRead;
    uint32 NumBytesWritten;
    uint32 BuffCnt;
    uint8 work[FF_MAX_SS];
    uint32 take_time=0;
    uint32 speed = 0;
    uint32 test_time = 0;
    uint32 w_t=0;
    uint32 r_t=0;
    float wsum = 0;
    float rsum = 0;
    TCHAR *Path = "0:/";
    for(int i=0;i<PACK_LEN;i++)
    {
        test_buffer[i] = 'a';
    }
    Res = f_mount(&fatfs, Path, 0);
    if (Res != FR_OK) {
        return XST_FAILURE;
    }
    Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);
    if (Res != FR_OK) {
        return XST_FAILURE;
    }
    SD_File = (char *)FileName;
    Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);
    if (Res) {
        return XST_FAILURE;
    }
    Res = f_lseek(&fil, 0);
    if (Res) {
        return XST_FAILURE;
    }
    while(1)
    {
        TimerA_reset(TimerA0);
        TimerA0_start();
        Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,
                &NumBytesWritten);
        TimerA0_stop();
        take_time = TimerA_Read_Counter_Register(TimerA0);
        w_t+=take_time;
        xil_printf("--------------------------------\n");
        xil_printf("take time:%d us\n",take_time);
        speed = PACK_LEN*(1000000/((float)(take_time)));
        sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);
        wsum = wsum+speed;
        xil_printf(txt);
        xil_printf("--------------------------------\n");
        if (Res) {
            return XST_FAILURE;
        }
        Res = f_lseek(&fil, 0);
        if (Res) {
            return XST_FAILURE;
        }
        TimerA_reset(TimerA0);
        TimerA0_start();
        Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,
                &NumBytesRead);
        TimerA0_stop();
        take_time = TimerA_Read_Counter_Register(TimerA0);
        r_t+=take_time;
        xil_printf("--------------------------------\n");
        xil_printf("take time:%d us\n",take_time);
        speed = PACK_LEN*(1000000/((float)(take_time)));
        sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);
        rsum = rsum+speed;
        xil_printf(txt);
        xil_printf("--------------------------------\n");
        if (Res) {
            return XST_FAILURE;
        }
        for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){
            if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){
                xil_printf("%dno",BuffCnt);
                return XST_FAILURE;
            }
        }
        xil_printf("test num:%d data check right!\n",test_time+1);
        test_time++;
        if(test_time==100)
        {
            sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);
            xil_printf(txt);
            sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);
            xil_printf(txt);
            Res = f_close(&fil);
            if (Res) {
                return XST_FAILURE;
            }
            return 0;
        }
    }
}
int main(void)
{
    TimerA0_init();
    SDCard_test();
    xil_printf("finish");
    return 0;
}

五、测试结果

经测试,两种型号的芯片读写速度如下图表所示。

其 SD NAND 的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合 SD 卡的特性;

对比两种型号 SD NAND 芯片,发现 CSNP32GCR01-AOW 型号具有更高的读写速度;

六、总结

本来打算拿这些样片去试试信息安全领域是否有所应用,但发现其似乎内置了复位或初始化,导致无法提取上电时的不确定值,故无法提取该 SD NAND 的物理不可克隆特性,所以这方面的测试无法进行;

对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且 LGA-8 封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。

官网体验

最后贴上测试工程的链接,还迎复现实验: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_test


http://www.kler.cn/a/390906.html

相关文章:

  • VS2015 + OpenCV + OnnxRuntime-Cpp + YOLOv8 部署
  • ThreadLocal 的使用场景
  • Perl语言的循环实现
  • 数据库环境安装(day1)
  • 基于springboot的网上商城购物系统
  • P10424 [蓝桥杯 2024 省 B] 好数
  • AI教育革命:个性化学习的新篇章
  • 注意力机制的目的:理解语义;编码器嵌入高纬空间计算;注意力得分“得到S*V”;解码器掩码和交叉注意力层用于训练;最终的编码器和输出实现大模型
  • 开源 AI 智能名片 S2B2C 商城小程序在微商内容展示中的应用与价值
  • 面试击穿mysql
  • 京东商品详情,Python爬虫的“闪电战”
  • vue3中 ref和reactive的区别
  • RNN(循环神经网络)详解
  • 【独立同分布】
  • LeetCode 二分算法 范围内整数的最大得分
  • [CUDA] cuda kernel开发记录
  • HTTP TCP三次握手深入解析
  • ESLint 使用教程(七):ESLint还能校验JSON文件内容?
  • XSS漏洞--常用payload及绕过
  • 关于解决使用VMWare内的虚拟机无法识别USB问题小结
  • 【JavaEE】文件io
  • Yocto项目 - 小心Overrides机制还用在Tasks中
  • mysql占用内存过大问题排查
  • java 递归算法案例讲解
  • Linux——简单认识vim、gcc以及make/Makefile
  • Python数据分析NumPy和pandas(二十六、数据整理--连接、合并和重塑 之三:重塑和透视)