当前位置: 首页 > article >正文

kafka消费数据太慢了,给优化下

原代码

public class KafkaConsumerDemo {
    public static void main(String[] args) {
        int numConsumers = 5; // 增加消费者的数量
        for (int i = 0; i < numConsumers; i++) {
            new Thread(new KafkaConsumerThread()).start();
        }
    }

    static class KafkaConsumerThread implements Runnable {
        @Override
        public void run() {
            // 配置消费者属性
            Properties props = new Properties();
            props.put("bootstrap.servers", "114.15.78.14:9092");
            props.put("group.id", "test-group");
            props.put("enable.auto.commit", "true");
            props.put("auto.commit.interval.ms", "1000");
            props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            // 调整消费者配置
            props.put("fetch.min.bytes", "1024"); // 最小获取1KB的数据
            props.put("fetch.max.wait.ms", "500"); // 最大等待500ms

            // 创建消费者实例
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

            // 订阅主题
            consumer.subscribe(Collections.singletonList("test-topic"));

            // 消费消息; 如果消息处理逻辑允许,可以批量处理消息,而不是逐条处理
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(500));
                if (!records.isEmpty()) {
                    for (ConsumerRecord<String, String> record : records) {
                        System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                    }
                    // 批量提交偏移量
                    consumer.commitSync();
                }
            }
        }
    }
}  

在 Kafka 消费者代码中,有几个地方可以进行优化以提高消费速度:

增加消费者线程:你已经增加了消费者的数量,这是一个很好的开始。确保每个消费者线程都在不同的分区上消费,以实现并行处理。

调整 fetch.min.bytes 和 fetch.max.wait.ms:这两个参数控制了消费者从 Kafka
服务器获取数据的最小字节数和最大等待时间。如果你的消息较小,增加 fetch.min.bytes
可能会导致消费者等待更长时间以收集足够的数据,这可能会降低消费速度。如果你的消息较大,可以适当增加这个值。

异步提交偏移量:你当前使用的是 consumer.commitSync() 进行同步提交偏移量,这会阻塞当前线程直到提交完成。可以考虑使用
consumer.commitAsync() 异步提交,这样可以不阻塞消费线程。

增加 max.poll.records:poll
方法有一个参数可以设置一次拉取的最大记录数。如果设置得太低,可能会导致频繁的网络请求,增加延迟。

合理设置 auto.commit.interval.ms:自动提交偏移量的间隔设置得太短可能会导致不必要的性能开销,可以适当增加这个值。

使用多线程处理消息:如果你的消息处理逻辑是 CPU 密集型的,可以考虑使用线程池来并行处理消息。

监控和调优:使用 Kafka 的监控工具来观察消费者的行为,找出瓶颈并进行调优。

下面是根据上述建议优化后的代码示例:

public class KafkaConsumerDemo {
    public static void main(String[] args) {
        int numConsumers = 5; // 增加消费者的数量
        for (int i = 0; i < numConsumers; i++) {
            new Thread(new KafkaConsumerThread()).start();
        }
    }

    static class KafkaConsumerThread implements Runnable {
        @Override
        public void run() {
            // 配置消费者属性
            Properties props = new Properties();
            props.put("bootstrap.servers", "114.15.78.14:9092");
            props.put("group.id", "test-group");
            props.put("enable.auto.commit", "true");
            props.put("auto.commit.interval.ms", "5000"); // 增加自动提交偏移量的间隔
            props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            // 调整消费者配置
            props.put("fetch.min.bytes", "1"); // 减少最小获取字节数
            props.put("fetch.max.wait.ms", "100"); // 减少最大等待时间
            props.put("max.poll.records", "500"); // 增加一次拉取的最大记录数

            // 创建消费者实例
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

            // 订阅主题
            consumer.subscribe(Collections.singletonList("test-topic"));

            // 消费消息
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                if (!records.isEmpty()) {
                    processRecords(records); // 异步处理消息
                    consumer.commitAsync(); // 异步提交偏移量
                }
            }
        }

        private void processRecords(ConsumerRecords<String, String> records) {
            // 异步处理消息的逻辑
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                // 这里可以添加消息处理逻辑,例如使用线程池并行处理
            }
        }
    }
}

http://www.kler.cn/a/391947.html

相关文章:

  • Js的回调函数
  • Unity自定义编辑器:基于枚举类型动态显示属性
  • RocketMQ 和 Kafka 有什么区别?
  • WEB攻防-通用漏洞_文件上传_黑白盒审计流程
  • 【 Verdi实用技巧-Part-3】
  • C++实现图书管理系统(Qt C++ GUI界面版)
  • labview连接sql server数据库
  • MySQL远程连接错误解决:Host is not allowed to connect to this MySQL server
  • 【Rust中的链表实现】
  • 【大数据测试HBase数据库 — 详细教程(含实例与监控调优)】
  • AI编程工具市场是一个庞大且不断增长的市场
  • vue3 组件通信 --- useAttrs()
  • 计算机毕业设计Python+Neo4j中华古诗词可视化 古诗词智能问答系统 古诗词数据分析 古诗词情感分析 PyTorch Tensorflow LSTM
  • 测试实项中的偶必现难测bug--<pre>标签问题
  • [面试]关于Redis 的持久化你了解吗
  • 中华活页文选(传统文化教学与研究)简介及期刊点评
  • 蓝队技术学习
  • 网络技术-OVS的ovs-ofctl add-flow 命令新增流表
  • Docker 的安装与使用
  • 什么是Python模块化编程
  • go map 映射
  • c++之deque和priority_queue
  • Python注意力机制Attention下CNN-LSTM-ARIMA混合模型预测中国银行股票价格|附数据代码...
  • python cachetools 快速入门
  • RPA 机器人流程自动化
  • vue2的uniapp添加用户登录校验