当前位置: 首页 > article >正文

彻底解决单片机BootLoader升级程序失败问题

文章目录

    • 1、引言
    • 2、MicroBoot:优雅的解决升级问题
      • 问题1:bootloader 在跳转到app前没有清理干净存在的痕迹
      • 问题2: 需要 APP 传递信息给 Bootloader
      • 问题3: APP单独运行没有问题,通过Bootloader跳转到APP运行莫名死机
      • 问题4: 固件升级过程中频繁中断
      • 问题5: 上位机操作过于复杂,客户难以使用
    • 3、MicorBoot架构
      • 3.1 层次框架
      • 3.2 模块化组件
    • 4、MicorBoot移植教程


MicroBoot 是一个由模块化代码组成的框架,旨在简化和加速嵌入式单片机程序的升级和开发过程。

1、引言

那些让人崩溃的BootLoader升级灾难

你有没有为写BootLoader无从下手发愁过?

你有没有为出厂的产品还需要开盖刷程序苦恼过?

你有没有为程序升级失败,产品变成“砖头”而抓耳挠腮过?

你有没有为升级完成后设备神秘失联而怀疑人生过?

你有没有因为固件升级Bug被老板当众灵魂拷问:“为啥烧进去就起不来了?”

灾难 1:升级一半突然断电

设备断电的瞬间,你的内心崩溃了:“完了,这次开机肯定黑屏。”客户还得拆机刷程序,一切从头再来。

灾难 2:传输到99%时卡死

传输固件时,进度条到99%停住不动——仿佛在嘲讽你:“嘿,看起来你离胜利只差一步哦。”偏偏这时客户来电:“还没好?”你只能干笑:“再给我两分钟……”

灾难 3:现场升级,接线找不到

客户现场的设备密不透风,调试接口深藏不露,调试工程师硬是趴在设备底下捣鼓半天:“线呢?我明明记得它在这儿啊……”

灾难 4:升级完成后设备变“失联王”

终于把固件刷进去,一键重启后,设备再也不响应了。就像刚被你送进冥王星:你呼唤它一万遍,它还是一言不发。

灾难 5:老板的灵魂拷问

你费尽心力搞定一版程序,上线后设备却不停死机。复盘会上,老板一句:“为什么烧进去就起不来了?”让你顿时哑口无言。

2、MicroBoot:优雅的解决升级问题

MicroBoot就是为了解决这些灾难而生的,它是我开发的BootLoader框架,专为嵌入式单片机设备的升级而优化。从断电保护到断点续传,从校验机制到高效通信,它全面提升了升级过程的可靠性,让固件升级变得轻松愉快。

问题1:bootloader 在跳转到app前没有清理干净存在的痕迹

问题描述: 固件更新完毕后从 bootloader 跳转至 APP 前需对所用的外设 deinit ,以使外设恢复至上电时的初始状态。但是当使用复杂的外设收取固件包时, deinit 也将变得复杂,甚至很难排除对 APP 的影响。因此最佳的方法是升级完固件进行软复位,再次进入bootloader在程序运行之前,先通过判断标志的方式,来直接跳转到app,这样就相当于给APP提供了一个干净的外设环境。

程序复位执行流程如下图所示:

请添加图片描述

常见方法及其局限性

传统的设置标志位以实现复位后保留状态的方法通常有以下两种:

  • 备份寄存器 :利用芯片中的不受软件复位影响的可供用户使用的寄存器 (如 STM32 中的备份寄存器);
    这种方法需要额外的设置,并且因单片机型号而异,增加了跨平台兼容的难度。

  • No-Init 数据段:将标志位放在特殊的内存段(例如.bss.noinit),使其在复位后避免被重新初始化。
    这种方法需要修改链接文件(分散加载文件),对不熟悉链接文件的开发者来说操作难度较高。

这两种方法都存在一定的局限性:设置复杂,且在断电情况下标志可能丢失。

解决方案:

MicroBoot采用了一种更优雅的“Magic Flag”方案。该方案在APP分配的FLASH空间末端设置三个标志(Magic1、Magic2、Magic3),总共占用192字节,每个标志占64字节,并根据固件升级的阶段来设置相应的标志。

描述Magic1 (64字节)Magic2 (64字节)Magic3 (64字节)
enter_bootloader0XFFFFFFFF0XFFFFFFFF0x00000000
begin_download0XFFFFFFFF0x000000000XFFFFFFFF
finalize_download0x000000000x000000000XFFFFFFFF

Magic Flag在FLASH中的位置,以及变化过程如下图所示:

请添加图片描述

标志的使用阶段

阶段1:进入Bootloader(enter_bootloader)

  • 对于全片擦除过的单片机,此时Magic1Magic2的值为0xFFFFFFFF,表示还未开始下载过程,Magic3被设置为0x00000000,表明这是一个等待升级程序的状态。
void enter_bootloader(void)
{
    uint32_t wData = 0;
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - 64), (const uint8_t *)&wData, sizeof(wData));
}

阶段2:开始下载(begin_download)

  • 当固件下载开始时,MicroBoot会首先对Magic所在的扇区擦除,然后将Magic2的值设置为0x00000000

  • 此时,Magic10xFFFFFFFFMagic3也保持为0xFFFFFFFF,这些状态便于系统在出现断电时判断下载是否已部分完成,从而支持断电续传。

void begin_download(void)
{
    memset(chBootMagic, 0, sizeof(chBootMagic));
    target_flash_erase(APP_PART_ADDR + APP_PART_SIZE - (192), 3*MARK_SIZE);
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - (128)), chBootMagic[1], MARK_SIZE);
}

阶段3:完成下载(finalize_download)

  • 当固件下载完成且数据写入成功后,MicroBoot会将Magic1的值设置为0x00000000,标志着下载过程已顺利完成。

  • 此时,Magic2的值仍为0x00000000,而Magic3的值保持为0xFFFFFFFF,从而标识此阶段为下载完成、准备进入应用程序的状态。

void finalize_download(void)
{
    memset(chBootMagic, 0X00, sizeof(chBootMagic));
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - 192), chBootMagic[0], MARK_SIZE);
}

阶段4:重新进入Bootloader并跳转到APP

  • 在系统完成固件升级后,MicroBoot会执行软复位,系统重新进入bootloader。

  • bootloader在检查到Magic1Magic2均为0x00000000,而Magic30xFFFFFFFF时,就会识别到这是一个升级完成的状态。

  • 这时,MicroBoot无需对外设进行反初始化,而是直接跳转到APP,从而为应用程序提供一个干净的外设环境。

阶段5:从APP再次进入Bootloader

  • 在APP正常运行后,如果想再次进入bootloader进行升级,调用MicroBoot提供的进入bootloader的接口,将会把Magic3设置为0x00000000,复位后,将会再次回到阶段1。

  • 当下次进入bootloader时,看到Magic1Magic2Magic3均为0x00000000

程序复位执行流程如下图所示:

请添加图片描述

对应的代码:

__attribute__((constructor))
static void enter_application(void)
{
    do {
        // User-defined conditions for entering the bootloader
        if(user_enter_bootloader()){
            break;			
        }
        // Read the magic values from flash memory to determine the next action
        target_flash_read((APP_PART_ADDR + APP_PART_SIZE - 3 * MARK_SIZE), chBootMagic[0], 3 * MARK_SIZE);

        // Check if Magic3 is 0x00, indicating to read user data from a specific location
        if ((0 == *(uint32_t *)&chBootMagic[2])) {
            break;
        }

        // Check if Magic2 is 0x00 and Magic1 is 0xFFFFFFFF, indicating to read user data from a different location
        if ((0 == *(uint32_t *)&chBootMagic[1]) && (0XFFFFFFFF == *(uint32_t *)&chBootMagic[0])) {
            break;
        }
		
        // Check if the value at the address (APP_PART_ADDR + 4) has the expected application identifier
        if (((*(volatile uint32_t *)(APP_PART_ADDR + 4)) & 0xff000000) != (APP_PART_ADDR & 0xff000000)) {
            break;
        }
		
        // If all checks are passed, modify the stack pointer and start the application
        modify_stack_pointer_and_start_app(*(volatile uint32_t *)APP_PART_ADDR,
                                           (*(volatile uint32_t *)(APP_PART_ADDR + 4)));

    } while(0);	
}

函数修饰符 __attribute__((constructor))告诉编译器在程序启动时自动调用这个函数。即在主程序的 main() 函数之前执行,它的主要功能是检查系统当前的状态,并根据状态决定是进入APP还是停留在bootloader。代码中增加了用户自定义的进入bootloader条件,代码通过调用user_enter_bootloader()检查用户是否指定了进入bootloader模式,这个检查是为了给用户留出手动控制的空间,比如通过外部按键强制进入bootloader,如果返回值为true,则直接退出函数,保持在bootloader中。

程序升级执行流程如下图所示:

请添加图片描述

问题2: 需要 APP 传递信息给 Bootloader

问题描述: 在一些嵌入式设备中,由于产品型号和应用场景的不同,固件升级的接口(如 UART、SPI、I2C 等)和波特率配置并不统一。这种情况下,Bootloader 无法在启动时确定应该使用的通信接口和波特率设置,因此需要从应用程序(APP)传递相关信息给 Bootloader,以便其在固件升级前做好正确的配置。

如果没有有效的机制让 APP 将接口和波特率信息传递给 Bootloader,可能会导致 Bootloader 和 APP 之间的通信不匹配,升级无法进行,甚至引发系统崩溃。

解决方案:

有了以上在flash中设置标志的思路,那就顺水推舟,再增加两个用户区的空间,给bootloader和app一个沟通数据的桥梁。

  • APP 参数写入:在需要固件升级时,APP 会将接口类型、波特率等升级信息写入指定的用户数据区。

  • Bootloader 参数读取:Bootloader 在启动时首先读取该存储区域,提取接口和波特率参数,并据此初始化通信配置。

  • 兼容性检测:如果读取的参数不符合预期,Bootloader 将回退至默认配置或停止启动,以保证通信的可靠性。

这种机制不仅灵活地适配了不同型号设备的升级需求,还提高了 Bootloader 的兼容性和稳定性。

更新后的FLASH空间如下:

描述用户数据备份区(192 字节)用户数据区(192字节)Magic1 (64字节)Magic2 (64字节)Magic3 (64字节)
enter_bootloader0XFFFFFFFF…user_data0XFFFFFFFF0XFFFFFFFF0x00000000
begin_downloaduser_data0XFFFFFFFF…0XFFFFFFFF0x000000000XFFFFFFFF
finalize_downloaduser_data0XFFFFFFFF…0x000000000x000000000XFFFFFFFF

用户数据在FLASH中的位置,以及变化过程如下图所示:

请添加图片描述

修改相应的代码:

阶段1:进入Bootloader(enter_bootloader)

  • 对于全片擦除过的单片机,此时user data的值为0xFFFFFFFF,当APP调用enter_bootloader接口,将会把app传递进来的数据写进用户区。
void enter_bootloader(uint8_t *pchDate, uint16_t hwLength)
{
    uint32_t wData = 0;
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - (3*MARK_SIZE) - (USER_DATA_SIZE)), pchDate, USER_DATA_SIZE);
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - MARK_SIZE), (const uint8_t *)&wData, sizeof(wData));
}

阶段2:开始下载(begin_download)

  • 当固件下载开始时,MicroBoot会首先对Magic所在的扇区擦除,然后将用户区的数据重新写到用户数据备份区

  • 此时,用户区0xFFFFFFFF,如果断电重启,系统将从用户数据备份区获取数据。

void begin_download(void)
{
    memset(chBootMagic, 0, sizeof(chBootMagic));
    target_flash_erase(APP_PART_ADDR + APP_PART_SIZE - (3*MARK_SIZE), 3*MARK_SIZE);
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - (3*MARK_SIZE) - 2 * (USER_DATA_SIZE)), tUserData.msg_data.B, USER_DATA_SIZE);
    target_flash_write((APP_PART_ADDR + APP_PART_SIZE - (2*MARK_SIZE)), chBootMagic[1], MARK_SIZE);
}

BootLoader程序复位执行的代码也要做相应的改变:

__attribute__((constructor))
static void enter_application(void)
{
    do {
		// User-defined conditions for entering the bootloader
		if(user_enter_bootloader()){
            target_flash_read((APP_PART_ADDR + APP_PART_SIZE - (3 * MARK_SIZE) - USER_DATA_SIZE), tUserData.msg_data.B, USER_DATA_SIZE);
            break;			
		}
        // Read the magic values from flash memory to determine the next action
        target_flash_read((APP_PART_ADDR + APP_PART_SIZE - 3 * MARK_SIZE), chBootMagic[0], 3 * MARK_SIZE);

        // Check if Magic3 is 0x00, indicating to read user data from a specific location
        if ((0 == *(uint32_t *)&chBootMagic[2])) {
            target_flash_read((APP_PART_ADDR + APP_PART_SIZE - (3 * MARK_SIZE) - USER_DATA_SIZE), tUserData.msg_data.B, USER_DATA_SIZE);
            break;
        }

        // Check if Magic2 is 0x00 and Magic1 is 0xFFFFFFFF, indicating to read user data from a different location
        if ((0 == *(uint32_t *)&chBootMagic[1]) && (0XFFFFFFFF == *(uint32_t *)&chBootMagic[0])) {
            target_flash_read((APP_PART_ADDR + APP_PART_SIZE - (3 * MARK_SIZE) - 2 * USER_DATA_SIZE), tUserData.msg_data.B, USER_DATA_SIZE);
            break;
        }
		
        // Check if the value at the address (APP_PART_ADDR + 4) has the expected application identifier
        if (((*(volatile uint32_t *)(APP_PART_ADDR + 4)) & 0xff000000) != (APP_PART_ADDR & 0xff000000)) {
            break;
        }
		
        // If all checks are passed, modify the stack pointer and start the application
        modify_stack_pointer_and_start_app(*(volatile uint32_t *)APP_PART_ADDR,
                                           (*(volatile uint32_t *)(APP_PART_ADDR + 4)));

    } while(0);	
}

BootLoader定义了一个默认的用户数据结构体,一共192个字节,APP可以在192个字节内随意向bootloader传递数据:

// <o>The user data size
//  <i>Default: 192
#define USER_DATA_SIZE            192

typedef struct {
    char chProjectName[16];
    char chHardWareVersion[16];
    char chSoftBootVersion[16];
    char chSoftAppVersion[16];
} msgSig_t;
typedef struct {
    union {
        msgSig_t sig;
        uint8_t B[USER_DATA_SIZE];
    } msg_data;
} user_data_t;

BootLoader为了方便App操作进入bootloader,并正确的传递数据,定义好了进入bootloader的接口,和操作Flash的函数,并将接口位置固定到0x08001000地址,这样APP就可以方便的操作Flash了

typedef struct {
    void (*fnEnterBootloaderMode)(uint8_t *pchDate, uint16_t hwLength);
    bool (*target_flash_init)(uint32_t addr); 
    bool (*target_flash_uninit)(uint32_t addr);
    int  (*target_flash_read)(uint32_t addr, uint8_t *buf, size_t size); 
    int  (*target_flash_write)(uint32_t addr, const uint8_t *buf, size_t size); 
    int  (*target_flash_erase)(uint32_t addr, size_t size); 
} boot_ops_t;

__attribute__((used))
static const boot_ops_t tBootOps  __attribute__ ((section(__ARM_AT(0x08001000)))) = {
    .fnEnterBootloaderMode = enter_bootloader,
    .target_flash_init = target_flash_init,
    .target_flash_erase = target_flash_erase,
    .target_flash_write = target_flash_write,
    .target_flash_read = target_flash_read,
    .target_flash_uninit = target_flash_uninit
};

APP区代码:

APP需要重新定义用户数据,添加需要向bootloader传递的数据。

typedef struct {
    char chProjectName[16];
    char chHardWareVersion[16];
    char chSoftBootVersion[16];
    char chSoftAppVersion[16];

    /*添加用户数据*/
    char chPort1Name[16];
    int wPort1Baudrate;
    char chPort2Name[16];
    int wPort2Baudrate;
    char chPort3Name[16];
    int wPort3Baudrate;

} msgSig_t;
typedef struct {
    union {
        msgSig_t sig;
        char B[sizeof(msgSig_t)];
    } msg_data;
} user_data_t;

user_data_t  tUserData = {
    .msg_data.sig.chProjectName = "project",
    .msg_data.sig.chHardWareVersion = HARDWARE_VERSION,
    .msg_data.sig.chSoftBootVersion = BOOTWARE_VERSION,
    .msg_data.sig.chSoftAppVersion =  SOFTWARE_VERSION,
};

typedef struct {
    void (*fnGoToBoot)(uint8_t *pchDate, uint16_t hwLength);
    bool (*target_flash_init)(uint32_t addr);
    bool (*target_flash_uninit)(uint32_t addr);
    int  (*target_flash_read)(uint32_t addr, uint8_t *buf, size_t size);
    int  (*target_flash_write)(uint32_t addr, const uint8_t *buf, size_t size);
    int  (*target_flash_erase)(uint32_t addr, size_t size);
} boot_ops_t;

比如通过CAN接口来升级程序,就可以这样做:

void can_boot()
{
    rt_memcpy(tUserData.msg_data.sig.chPort1Name, "CAN1", rt_strlen("CAN1"));
    tUserData.msg_data.sig.wPort1Baudrate = 500000;
    boot_ops_t *ptBootOps = (boot_ops_t *) 0x08001000;
    ptBootOps->fnGoToBoot((uint8_t *)tUserData.msg_data.B, sizeof(tUserData));
    rt_hw_cpu_reset();
}
MSH_CMD_EXPORT(can_boot, go to bootloader);

比如通过UART接口来升级程序,就可以这样做:

void uart_boot()
{
    rt_memcpy(tUserData.msg_data.sig.chPort1Name, "UART1", rt_strlen("UART1"));
    tUserData.msg_data.sig.wPort1Baudrate = 115200;
    boot_ops_t *ptBootOps = (boot_ops_t *) 0x08001000;
    ptBootOps->fnGoToBoot((uint8_t *)tUserData.msg_data.B, sizeof(tUserData));
    rt_hw_cpu_reset();
}
MSH_CMD_EXPORT(uart_boot, go to bootloader);

问题3: APP单独运行没有问题,通过Bootloader跳转到APP运行莫名死机

问题描述:在近几年的嵌入式社区中,流传着不少关于面相Cortex-MBootloader科普文章,借助这些文章,一些较为经典的代码片断和技巧得到了广泛的传播。

在从Bootloader跳转到用户APP的过程中,使用函数指针而非传统的汇编代码则成了一个家喻户晓的小技巧。相信类似下面 JumpToApp() 函数,你一定不会感到陌生:

typedef  void (*pFunction)(void);

void JumpToApp(uint32_t addr)
{
  pFunction Jump_To_Application;

  __IO uint32_t StackAddr;
  __IO uint32_t ResetVector;
  __IO uint32_t JumpMask;

  JumpMask = ~((MCU_SIZE-1)|0xD000FFFF);

  if (((*(__IO uint32_t *)addr) & JumpMask ) == 0x20000000) //�ж�SPָ��λ��
  {
    StackAddr = *(__IO uint32_t*)addr;
    ResetVector = *(__IO uint32_t *)(addr + 4);

    __set_MSP(StackAddr); 
    Jump_To_Application = (pFunction)ResetVector;
    Jump_To_Application(); 
  }
}

但是这段家喻户晓,被世人奉为真理的代码,却隐藏着很深的BUG,相信很多小伙伴都遇到过通过Bootloader跳转到APP后,程序时好时坏的灵异事件,具体详情请看这篇文章:震惊!这个隐藏的Bootloader漏洞究竟有多少人中招?

解决方案:

完全用汇编来处理从BootloaderApp的最后步骤,才是最稳定可靠的方案:

#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
/* Avoids the semihosting issue */
__asm("  .global __ARM_use_no_argv\n");
#elif defined(__GNUC__)
/* Disables part of C/C++ runtime startup/teardown */
void __libc_init_array (void) {}
#endif

#if defined(__CC_ARM)
__asm void modify_stack_pointer_and_start_app(uint32_t r0_sp, uint32_t r1_pc)
{
    MOV SP, R0
    BX R1
}
#elif defined(__GNUC__)
void modify_stack_pointer_and_start_app(uint32_t r0_sp, uint32_t r1_pc)
{
    uint32_t z = 0;
    __asm volatile (  "msr    control, %[z]   \n\t"
                      "isb                    \n\t"
                      "mov    sp, %[r0_sp]    \n\t"
                      "bx     %[r1_pc]"
                      :
                      :   [z] "l" (z),
                      [r0_sp] "l" (r0_sp),
                      [r1_pc] "l" (r1_pc)
                   );
}
#else
#error "Unknown compiler!"
#endif

问题4: 固件升级过程中频繁中断

问题描述: 在固件升级过程中,由于通信信号不稳定或数据包丢失,传输可能会频繁中断,导致升级失败。用户常常需要多次尝试才能成功完成固件升级,特别是对于大文件传输,这种情况不仅耗时还影响体验。

解决方案:

为了提高传输稳定性,我采用状态机的方式重新开发了 ymodem 协议。此改进后的 ymodem 通过精细管理传输状态,使其更具稳定性和效率,即便在传输过程中断线,也能在超时前重新连接后继续传输,无需重新开始。

  1. ymodem 传输协议:ymodem 提供了文件校验和分段传输机制,提高了传输过程的鲁棒性。
  2. 自动重试机制:ymodem 协议中带有重试机制,确保每个数据包在成功接收前会自动重发,以提升传输成功率。

问题5: 上位机操作过于复杂,客户难以使用

**问题描述:**对于许多客户,传统上位机操作系统设计复杂且需要较高的技术水平,操作不当还可能导致设备升级失败。这不仅增加了技术支持成本,也降低了客户满意度,尤其对于不具备技术背景的用户而言,升级流程显得尤为繁琐。

解决方案:

为了解决客户的操作复杂度问题,我开发了专门的 MicroLink 工具,使固件升级过程简单直观。

MicroLink 是一款多功能嵌入式系统开发工具,专为加速和简化开发者在 研发、调试、量产和售后服务 各阶段的工作流程设计。与改进后的 ymodem 结合使用时,MicroLink 能显著提升升级体验:

  • 拖放式升级:用户只需将固件文件拖放至 MicroLink 提供的虚拟 U 盘,即可自动完成传输和安装。

  • 稳定的断点续传支持:借助重新开发的 ymodem 协议,即使传输中断,也能自动在恢复后继续传输,避免重复操作。

拖放式升级演示视频如下:

microlink U盘拖拽 ymodem下载

产品链接:https://item.taobao.com/item.htm?ft=t&id=826800975011
文档说明:https://microboot.readthedocs.io/zh-cn/latest/tools/microlink/microlink/
开源代码:https://github.com/Aladdin-Wang/MicroBoot
请添加图片描述

3、MicorBoot架构

3.1 层次框架

请添加图片描述

3.2 模块化组件

  • bootloader

  • ymodem

一个使用状态机编写的ymodem协议

  • 统一的Flash驱动管理模块

  • 环形队列

一个用C语言编写的支持多类型、函数重载与线程安全的环形队列

  • 信号槽

一个用C语言模拟QT的信号槽的功能

  • 发布订阅

  • shell

  • 混合数据流引擎

4、MicorBoot移植教程

  • 基于 CMSIS-PACK 移植
  • 基于源码移植
  • 基于rtthread软件包移植

http://www.kler.cn/a/391972.html

相关文章:

  • Spring 设计模式:经典设计模式
  • gesp(C++四级)(11)洛谷:B4005:[GESP202406 四级] 黑白方块
  • RabbitMQ基本介绍及简单上手
  • Word 转成pdf及打印的开源方案支持xp
  • day02-前端Web-JavaScript
  • 利用AI大模型和Mermaid生成流程图
  • 【Qt-ROS开发】使用 Qt Creator 构建和编译含 ROS 库的 Qt 项目
  • 选择IP-guard还是Ping32?了解两款数据防泄漏软件的优势和应用
  • 矩阵函数及计算
  • 《Javascript 网页设计案例分享》
  • LeetCode【0006】Z字形变换
  • Linux服务器虚拟化
  • ChatGPT进阶:提示工程~读书笔记
  • 后端:Aop 面向切面编程
  • 拷贝和浅拷贝的区别,以及对于循环引用如何处理深拷贝
  • web端手机录音
  • 信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
  • [2024最新] macOS 发起 Bilibili 直播(不使用 OBS)
  • 进程信息和定时任务
  • 数学建模学习(136):使用Python基于Fuzzy WSM、Fuzzy WPM、Fuzzy WASPAS的多准则决策分析
  • Elasticsearch 和 Kibana 8.16:Kibana 获得上下文和 BBQ 速度并节省开支!
  • 使用Spring AI中的RAG技术,实现私有业务领域的大模型系统
  • SpringBoot自定义Starter指南
  • MyBatisPlus(Spring Boot版)的基本使用
  • gpu-V100显卡相关知识
  • 使用多种机器学习调参模型进行二分类建模的全流程,代做分析辅导