当前位置: 首页 > article >正文

【WebRTC】视频发送链路中类的简单分析(下)

目录

  • 1.任务队列节流发送器(TaskQueuePacedSender)
    • 1.1 节流控制器添加RTP数据包(PacingController::EnqueuePacket())
    • 1.2 监测是否要处理Packet(PacingController::MaybeProcessPackets())
  • 2.数据包路由(PacketRouter)
  • 3.模块RtpRtcp的实现(ModuleRtpRtcpImpl2)
  • 4.RTP出站发送器(RTPSenderEgress)
  • 5.媒体通道的实现(MediaChannelUtil)
  • 6.基础通道(BaseChannel)
  • 6.安全RTP传输(SrtpTransport)
  • 7.DTLS-SRTP 传输(DtlsSrtpTransport)
  • 8.DTLS传输(DtlsTransport)
  • 9.P2P传输通道(P2PTransportChannel)

WebRTC中类的简单分析:
【WebRTC】视频发送链路中类的简单分析(上)

在前一部分当中,记录视频流已经传输到RTPSender当中的paced_sender_->EnqueuePackets(),这个函数会逐渐向底层深入,发送RTP数据包,下面记录后一部分的传输流程

1.任务队列节流发送器(TaskQueuePacedSender)

paced_sender_->EnqueuePackets()的具体实现位于TaskQueuePacedSender这个类中,声明在modules/pacing/task_queue_paced_sender.h,其中会对任务队列进行一些处理,例如暂停队列,重启队列,检查队列信息等,最核心的函数是EnqueuePackets(),用于将RTP数据包添加到队列当中

class TaskQueuePacedSender : public RtpPacketPacer, public RtpPacketSender {
 public:
  static const int kNoPacketHoldback;

  // The pacer can be configured using `field_trials` or specified parameters.
  //
  // The `hold_back_window` parameter sets a lower bound on time to sleep if
  // there is currently a pacer queue and packets can't immediately be
  // processed. Increasing this reduces thread wakeups at the expense of higher
  // latency.
  //
  // The taskqueue used when constructing a TaskQueuePacedSender will also be
  // used for pacing.
  /*
	节流器可以通过 `field_trials` 进行配置,或者指定参数。
	`hold_back_window` 参数设置了如果当前有节流队列且数据包不能立即被处理时,睡眠时间的下限。
	增加这个值可以减少线程唤醒次数,但代价是增加延迟。

	在构造 TaskQueuePacedSender 时使用的 taskqueue 也将用于节流。
  */
  TaskQueuePacedSender(Clock* clock,
                       PacingController::PacketSender* packet_sender,
                       const FieldTrialsView& field_trials,
                       TimeDelta max_hold_back_window,
                       int max_hold_back_window_in_packets);

  ~TaskQueuePacedSender() override;

  // The pacer is allowed to send enqued packets in bursts and can build up a
  // packet "debt" that correspond to approximately the send rate during
  // 'burst_interval'.
  // 节流器被允许以突发的方式发送排队的数据包,并可以累积一个“债务”数据包数量,
  // 这个数量大致对应于在 'burst_interval' 期间的发送速率。
  // 设置发送突发间隔
  void SetSendBurstInterval(TimeDelta burst_interval);

  // A probe may be sent without first waing for a media packet.
  // 一个探测包可能会在没有首先等待媒体数据包的情况下被发送
  void SetAllowProbeWithoutMediaPacket(bool allow);

  // Ensure that necessary delayed tasks are scheduled.
  // 确保必要的延迟任务被安排
  void EnsureStarted();

  // Methods implementing RtpPacketSender.

  // Adds the packet to the queue and calls
  // PacingController::PacketSender::SendPacket() when it's time to send.
  // 将数据包添加到队列当中
  void EnqueuePackets(
      std::vector<std::unique_ptr<RtpPacketToSend>> packets) override;
  // Remove any pending packets matching this SSRC from the packet queue.
  // 从数据包队列中移除所有与此SSRC匹配的待处理数据包
  void RemovePacketsForSsrc(uint32_t ssrc) override;

  // Methods implementing RtpPacketPacer.
  // 创建探测集群(cluster),网络拥塞控制中,探测集群是一种用来估计网络带宽的方法
  void CreateProbeClusters(
      std::vector<ProbeClusterConfig> probe_cluster_configs) override;

  // Temporarily pause all sending.
  // 暂停发送数据包
  void Pause() override;

  // Resume sending packets.
  // 重新发送数据包
  void Resume() override;
  // 设置网络是否处于拥塞状态
  void SetCongested(bool congested) override;

  // Sets the pacing rates. Must be called once before packets can be sent.
  // 设置发送RTP包的节流速率和填充速率
  void SetPacingRates(DataRate pacing_rate, DataRate padding_rate) override;

  // Currently audio traffic is not accounted for by pacer and passed through.
  // With the introduction of audio BWE, audio traffic will be accounted for
  // in the pacer budget calculation. The audio traffic will still be injected
  // at high priority.
  // 指示节流器是否应该考虑音频流量
  void SetAccountForAudioPackets(bool account_for_audio) override;
  // 是否应该在计算发送速率时考虑传输开销。如果启用,发送器将在计算节流速率时包括传输开销,如IP和UDP头部等
  void SetIncludeOverhead() override;
  // 设置每个传输包的开销大小。overhead_per_packet参数指定了每个RTP包的固定开销大小,包括IP、UDP和可能的其他协议头部
  void SetTransportOverhead(DataSize overhead_per_packet) override;

  // Returns the time since the oldest queued packet was enqueued.
  // 返回队列中最老的包自入队以来的等待时间
  TimeDelta OldestPacketWaitTime() const override;

  // Returns total size of all packets in the pacer queue.
  // 返回节流器队列中所有包的总大小
  DataSize QueueSizeData() const override;

  // Returns the time when the first packet was sent;
  // 返回发送的第一个数据包的时间戳
  std::optional<Timestamp> FirstSentPacketTime() const override;

  // Returns the number of milliseconds it will take to send the current
  // packets in the queue, given the current size and bitrate, ignoring prio.
  // 根据当前队列中数据包的大小和比特率,忽略优先级,返回发送当前队列中数据包所需的毫秒数
  TimeDelta ExpectedQueueTime() const override;

  // Set the max desired queuing delay, pacer will override the pacing rate
  // specified by SetPacingRates() if needed to achieve this goal.
  // 设置最大期望的排队延迟,如果需要的话,节流器将覆盖通过 SetPacingRates() 指定的节流速率以实现这一目标
  void SetQueueTimeLimit(TimeDelta limit) override;

 protected:
  // Exposed as protected for test.
  struct Stats {
    Stats()
        : oldest_packet_enqueue_time(Timestamp::MinusInfinity()),
          queue_size(DataSize::Zero()),
          expected_queue_time(TimeDelta::Zero()) {}
    Timestamp oldest_packet_enqueue_time;
    DataSize queue_size;
    TimeDelta expected_queue_time;
    std::optional<Timestamp> first_sent_packet_time;
  };
  void OnStatsUpdated(const Stats& stats);

 private:
  // Call in response to state updates that could warrant sending out packets.
  // Protected against re-entry from packet sent receipts.
  // 检查当前是否是发送数据包的合适时机,如果是,则直接调用ProcessPackets()来发送数据包;
  // 如果不是,则安排一个延迟任务,在将来的某个时间点再次检查
  
  // 决定是否需要根据状态更新来发送数据包。它通常在网络状态变化、新数据包到达或其他可能影响发送计划的事件发生时被调用
  void MaybeScheduleProcessPackets() RTC_RUN_ON(task_queue_);
  // Check if it is time to send packets, or schedule a delayed task if not.
  // Use Timestamp::MinusInfinity() to indicate that this call has _not_
  // been scheduled by the pacing controller. If this is the case, check if we
  // can execute immediately otherwise schedule a delay task that calls this
  // method again with desired (finite) scheduled process time.
  // 检查是否是一个合适的时机去发送数据包
  /*
	1.如果scheduled_process_time是Timestamp::MinusInfinity(),这表示这个调用没有被节流控制器安排,
	而是由于其他原因(如新数据包到达)被触发。在这种情况下,函数会检查是否可以立即执行ProcessPackets();
	如果不可以,则安排一个延迟任务,在合适的时间再次调用MaybeProcessPackets(),并传入一个具体的计划发送时间

	2.如果scheduled_process_time是一个具体的有限值,函数会检查当前时间是否已经到达或超过了这个计划时间。
	如果是,它会调用ProcessPackets()来发送数据包;如果不是,它会安排一个延迟任务,在计划时间到达时再次调用
	MaybeProcessPackets()
  */
  void MaybeProcessPackets(Timestamp scheduled_process_time);

  void UpdateStats() RTC_RUN_ON(task_queue_);
  Stats GetStats() const;

  Clock* const clock_;

  // The holdback window prevents too frequent delayed MaybeProcessPackets()
  // calls. These are only applicable if `allow_low_precision` is false.
  const TimeDelta max_hold_back_window_;
  const int max_hold_back_window_in_packets_;
  // 节流控制器
  PacingController pacing_controller_ RTC_GUARDED_BY(task_queue_);

  // We want only one (valid) delayed process task in flight at a time.
  // If the value of `next_process_time_` is finite, it is an id for a
  // delayed task that will call MaybeProcessPackets() with that time
  // as parameter.
  // Timestamp::MinusInfinity() indicates no valid pending task.
  /*
	我们希望在任何时候只有一个(有效的)延迟处理任务在执行中。如果 `next_process_time_` 的值是有限的,
	那么它就是一个延迟任务的标识符,这个任务将会使用那个时间作为参数调用 `MaybeProcessPackets()`。
	Timestamp::MinusInfinity() 表示没有有效的待处理任务
  */
  Timestamp next_process_time_ RTC_GUARDED_BY(task_queue_);

  // Indicates if this task queue is started. If not, don't allow
  // posting delayed tasks yet.
  // 如果当前任务队列没有开始,不允许延时任务
  bool is_started_ RTC_GUARDED_BY(task_queue_);

  // Indicates if this task queue is shutting down. If so, don't allow
  // posting any more delayed tasks as that can cause the task queue to
  // never drain.
  // 如果任务队列关闭,不允许添加延时任务
  bool is_shutdown_ RTC_GUARDED_BY(task_queue_);

  // Filtered size of enqueued packets, in bytes.
  rtc::ExpFilter packet_size_ RTC_GUARDED_BY(task_queue_);
  bool include_overhead_ RTC_GUARDED_BY(task_queue_);

  Stats current_stats_ RTC_GUARDED_BY(task_queue_);
  // Protects against ProcessPackets reentry from packet sent receipts.
  bool processing_packets_ RTC_GUARDED_BY(task_queue_) = false;

  ScopedTaskSafety safety_;
  TaskQueueBase* task_queue_;
};

TaskQueuePacedSender::EnqueuePackets()的实现方式如下

void TaskQueuePacedSender::EnqueuePackets(
    std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
  task_queue_->PostTask(
      SafeTask(safety_.flag(), [this, packets = std::move(packets)]() mutable {
        RTC_DCHECK_RUN_ON(task_queue_);
        TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webrtc"),
                     "TaskQueuePacedSender::EnqueuePackets");
        for (auto& packet : packets) {
          TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"),
                       "TaskQueuePacedSender::EnqueuePackets::Loop",
                       "sequence_number", packet->SequenceNumber(),
                       "rtp_timestamp", packet->Timestamp());

          size_t packet_size = packet->payload_size() + packet->padding_size();
          if (include_overhead_) {
            packet_size += packet->headers_size();
          }
          packet_size_.Apply(1, packet_size);
          RTC_DCHECK_GE(packet->capture_time(), Timestamp::Zero());
          // 将RTP数据包添加到PacingController当中
          pacing_controller_.EnqueuePacket(std::move(packet));
        }
        // 检查当前时刻是否可以发送数据包
        MaybeProcessPackets(Timestamp::MinusInfinity());
      }));
}

上面核心的处理函数为pacing_controller_.EnqueuePacket()和MaybeProcessPackets(),功能分别是添加RTP数据包到PacingController中和检查是否可以发送数据包。

1.1 节流控制器添加RTP数据包(PacingController::EnqueuePacket())

void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
  // ...
  // 探测器检测到packet
  prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size()));

  const Timestamp now = CurrentTime();
  if (packet_queue_.Empty()) {
    // If queue is empty, we need to "fast-forward" the last process time,
    // so that we don't use passed time as budget for sending the first new
    // packet.
    Timestamp target_process_time = now;
    Timestamp next_send_time = NextSendTime();
    if (next_send_time.IsFinite()) {
      // There was already a valid planned send time, such as a keep-alive.
      // Use that as last process time only if it's prior to now.
      target_process_time = std::min(now, next_send_time);
    }
    UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_process_time));
  }
  // 将packet送入到队列当中
  packet_queue_.Push(now, std::move(packet));
  seen_first_packet_ = true;

  // Queue length has increased, check if we need to change the pacing rate.
  MaybeUpdateMediaRateDueToLongQueue(now);
}

1.2 监测是否要处理Packet(PacingController::MaybeProcessPackets())

函数的作用是检查是否要处理当前队列中的packets,其中最核心的函数是ProcessPackets(),表示处理packets

void TaskQueuePacedSender::MaybeProcessPackets(
    Timestamp scheduled_process_time) {
  // ...

  // Process packets and update stats.
  while (next_send_time <= now + early_execute_margin) {
    // 处理packets
    pacing_controller_.ProcessPackets();
    next_send_time = pacing_controller_.NextSendTime();
    RTC_DCHECK(next_send_time.IsFinite());

    // Probing state could change. Get margin after process packets.
    early_execute_margin = pacing_controller_.IsProbing()
                               ? PacingController::kMaxEarlyProbeProcessing
                               : TimeDelta::Zero();
  }
  UpdateStats();

  // ...
}

pacing_controller_.ProcessPackets()的实现方式如下,主要使用packet_sender_->SendPacket()来发送数据

void PacingController::ProcessPackets() {
  // ...
  if (ShouldSendKeepalive(now)) {
    DataSize keepalive_data_sent = DataSize::Zero();
    // We can not send padding unless a normal packet has first been sent. If
    // we do, timestamps get messed up.
    if (seen_first_packet_) {
      std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
          packet_sender_->GeneratePadding(DataSize::Bytes(1));
      for (auto& packet : keepalive_packets) {
        keepalive_data_sent +=
            DataSize::Bytes(packet->payload_size() + packet->padding_size());
        packet_sender_->SendPacket(std::move(packet), PacedPacketInfo());
        for (auto& packet : packet_sender_->FetchFec()) {
          EnqueuePacket(std::move(packet));
        }
      }
    }
    OnPacketSent(RtpPacketMediaType::kPadding, keepalive_data_sent, now);
  }

  // ...

  DataSize data_sent = DataSize::Zero();
  int iteration = 0;
  int packets_sent = 0;
  int padding_packets_generated = 0;
  for (; iteration < circuit_breaker_threshold_; ++iteration) {
    // ...
    if (rtp_packet == nullptr) {
      // ...
    } else {
      // ...
      packet_sender_->SendPacket(std::move(rtp_packet), pacing_info);
      for (auto& packet : packet_sender_->FetchFec()) {
        EnqueuePacket(std::move(packet));
      }
      // ...
    }
  }
}

这里的packet_sender_->SendPacket()的实现由PacketRouter给出

2.数据包路由(PacketRouter)

PacketRouter的声明位于modules/pacing/packet_router.h中,这是一个路由器的类,主要的功能是接收RTP数据包,将其送入到下一模块中。另外,PacketRouter能够发送一些反馈消息

// PacketRouter keeps track of rtp send modules to support the pacer.
// In addition, it handles feedback messages, which are sent on a send
// module if possible (sender report), otherwise on receive module
// (receiver report). For the latter case, we also keep track of the
// receive modules.
/*
	PacketRouter 负责跟踪 RTP 发送模块,以支持节奏发送器(pacer)。此外,它还处理反馈消息,
	这些消息如果可能会在发送模块上发送(发送报告),否则则在接收模块上发送(接收报告)。
	对于后者情况,我们还会跟踪接收模块。
*/
class PacketRouter : public PacingController::PacketSender {
 public:
  PacketRouter();
  ~PacketRouter() override;

  PacketRouter(const PacketRouter&) = delete;
  PacketRouter& operator=(const PacketRouter&) = delete;

  // Callback is invoked after pacing, before a packet is forwarded to the
  // sending rtp module.
  // 添加一些回调函数,可以在发送数据包之前做一些定义,例如监控带宽等
  void RegisterNotifyBweCallback(
      absl::AnyInvocable<void(const RtpPacketToSend& packet,
                              const PacedPacketInfo& pacing_info)> callback);
  // 添加一个Rtp发送模块(PacketRouter能够管理多个Rtp模块),REMB:Receiver Estimated Max Bitrate
  void AddSendRtpModule(RtpRtcpInterface* rtp_module, bool remb_candidate);
  // 移除一个Rtp发送模块
  void RemoveSendRtpModule(RtpRtcpInterface* rtp_module);
  // 检查当前的 PacketRouter 是否支持RTX 载填充,如果支持则具备更好的鲁棒性
  bool SupportsRtxPayloadPadding() const;
  // 添加一个Rtp接收模块
  void AddReceiveRtpModule(RtcpFeedbackSenderInterface* rtcp_sender,
                           bool remb_candidate);
  // 移除一个Rtp接收模块
  void RemoveReceiveRtpModule(RtcpFeedbackSenderInterface* rtcp_sender);
  // 核心函数,发送数据包到下一模块
  void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                  const PacedPacketInfo& cluster_info) override;
  // 获取前向纠错
  std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override;
  std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
      DataSize size) override;
  // 终止重传请求
  void OnAbortedRetransmissions(
      uint32_t ssrc,
      rtc::ArrayView<const uint16_t> sequence_numbers) override;
  // 查询与给定媒体 SSRC 相关联的 RTX(重传扩展)SSRC
  std::optional<uint32_t> GetRtxSsrcForMedia(uint32_t ssrc) const override;
  // 在一批数据包处理完成后被调用
  void OnBatchComplete() override;

  // Send REMB feedback.
  // 发送 REMB 反馈
  void SendRemb(int64_t bitrate_bps, std::vector<uint32_t> ssrcs);

  // Sends `packets` in one or more IP packets.
  // 将传入的 RTCP 数据包发送出去。这些数据包可能会被组合成一个或多个 IP 数据包进行发送
  void SendCombinedRtcpPacket(
      std::vector<std::unique_ptr<rtcp::RtcpPacket>> packets);

 private:
  // 添加一个候选的 REMB 模块
  void AddRembModuleCandidate(RtcpFeedbackSenderInterface* candidate_module,
                              bool media_sender);
  // 条件性地移除一个候选的 REMB 模块
  void MaybeRemoveRembModuleCandidate(
      RtcpFeedbackSenderInterface* candidate_module,
      bool media_sender);
  // 取消当前活动的 REMB 模块,在需要切换或停止使用当前的 REMB 模块时,可以调用此方法
  void UnsetActiveRembModule();
  // 确定当前的活动 REMB 模块,可能会根据某些条件(如模块的状态、能力等)来选择合适的模块
  void DetermineActiveRembModule();
  // 将一个 RTP 发送模块添加到映射中,PacketRouter 可以管理多个 RTP 模块,并根据 SSRC 跟踪它们
  void AddSendRtpModuleToMap(RtpRtcpInterface* rtp_module, uint32_t ssrc);
  // 从映射中移除一个 RTP 发送模块
  void RemoveSendRtpModuleFromMap(uint32_t ssrc);
  // 确保某些操作(如对其他成员变量的访问)只在特定线程中执行,防止数据竞争和不一致的状态
  SequenceChecker thread_checker_;
  // Ssrc to RtpRtcpInterface module;
  // 哈希表,映射 SSRC(同步源标识符)到对应的 RTP 模块
  // 通过 SSRC,系统可以快速查找和访问与特定媒体流相关的 RTP 发送模块。这种映射支持高效的数据包路由和管理
  std::unordered_map<uint32_t, RtpRtcpInterface*> send_modules_map_
      RTC_GUARDED_BY(thread_checker_);
  // 存储指向 RTP 模块的指针
  // 用于维护添加的 RTP 模块的顺序,便于迭代和管理。这种数据结构在插入和删除操作上效率较高
  std::list<RtpRtcpInterface*> send_modules_list_
      RTC_GUARDED_BY(thread_checker_);
  // The last module used to send media.
  // 指向最后一个用于发送媒体的 RTP 模块的指针
  // 记录最近使用的 RTP 模块,可以在需要时快速访问。这对于优化发送过程和管理状态非常有用
  RtpRtcpInterface* last_send_module_ RTC_GUARDED_BY(thread_checker_);
  // Rtcp modules of the rtp receivers.
  // 存储指向 RTCP 反馈发送接口的指针
  // 这个向量可以包含多个 RTCP 反馈发送模块,用于处理反馈消息的发送,如带宽估计等。
  // 通过管理这些发送者,系统可以灵活地发送反馈信息
  std::vector<RtcpFeedbackSenderInterface*> rtcp_feedback_senders_
      RTC_GUARDED_BY(thread_checker_);

  // Candidates for the REMB module can be RTP sender/receiver modules, with
  // the sender modules taking precedence.
  // 发送REMB候选模块
  std::vector<RtcpFeedbackSenderInterface*> sender_remb_candidates_
      RTC_GUARDED_BY(thread_checker_);
  // 接收REMB候选模块
  std::vector<RtcpFeedbackSenderInterface*> receiver_remb_candidates_
      RTC_GUARDED_BY(thread_checker_);
  // 当前活动的REMB模块
  RtcpFeedbackSenderInterface* active_remb_module_
      RTC_GUARDED_BY(thread_checker_);
  // 用于跟踪传输序列
  uint64_t transport_seq_ RTC_GUARDED_BY(thread_checker_);
  // 用于在带宽估计变化时通知
  absl::AnyInvocable<void(RtpPacketToSend& packet,
                          const PacedPacketInfo& pacing_info)>
      notify_bwe_callback_ RTC_GUARDED_BY(thread_checker_) = nullptr;
  // 待发送的前向纠错(FEC)数据包
  std::vector<std::unique_ptr<RtpPacketToSend>> pending_fec_packets_
      RTC_GUARDED_BY(thread_checker_);
  // 当前批处理中使用的 RTP 模块
  std::set<RtpRtcpInterface*> modules_used_in_current_batch_
      RTC_GUARDED_BY(thread_checker_);
};

PacketRouter中的核心函数SendPacket()的实现方式如下,其中调用了rtp_module->SendPacket()将RTP数据包送入RtpRtcpInterface中,rtp_module的数据类型为RtpRtcpInterface

void PacketRouter::SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                              const PacedPacketInfo& cluster_info) {
  // ...

  rtp_module->SendPacket(std::move(packet), cluster_info);
  modules_used_in_current_batch_.insert(rtp_module);

  // Sending succeeded.
  if (rtp_module->SupportsRtxPayloadPadding()) {
    // This is now the last module to send media, and has the desired
    // properties needed for payload based padding. Cache it for later use.
    last_send_module_ = rtp_module;
  }

  for (auto& packet : rtp_module->FetchFecPackets()) {
    pending_fec_packets_.push_back(std::move(packet));
  }
}

实际上,RtpRtcpInterface中并没有实现SendPacket()这个函数,而是声明为了纯虚函数,位于modules/rtp_rtcp/source/rtp_rtcp_interface.h

class RtpRtcpInterface : public RtcpFeedbackSenderInterface {
 public:
 // Try to send the provided packet. Returns true iff packet matches any of
  // the SSRCs for this module (media/rtx/fec etc) and was forwarded to the
  // transport.
  virtual bool TrySendPacket(std::unique_ptr<RtpPacketToSend> packet,
                             const PacedPacketInfo& pacing_info) = 0;

  //  Returns true if the module can send media packets and the module is ready
  //  so send `packet` A RTP Sequence numbers may or may not have been assigned
  //  to the packet.
  virtual bool CanSendPacket(const RtpPacketToSend& packet) const = 0;

  //  Assigns continuous RTP sequence number to packet.
  virtual void AssignSequenceNumber(RtpPacketToSend& packet) = 0;

  // Send the packet to transport. Before using this method, a caller must
  // ensure the packet can be sent by first checking if the packet can be sent
  // using CanSendPacket and the packet must be assigned a sequence number using
  // AssignSequenceNumber.
  virtual void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                          const PacedPacketInfo& pacing_info) = 0;
 }

RtpRtcpInterface中SendPacket()的实现由ModuleRtpRtcpImpl2给出,这个类以public的方式继承了RtpRtcpInterface

3.模块RtpRtcp的实现(ModuleRtpRtcpImpl2)

RtpRtcp模块负责处理 RTP数据包的发送和接收,而ModuleRtpRtcpImpl2是RtpRtcp模块的具体实现,其中实现了RtpRtcpInterface中最重要的函数SendPacket(),声明位于modules/rtp_rtcp/source/rtp_rtcp_impl2.h

class ModuleRtpRtcpImpl2 final : public RtpRtcpInterface,
                                 public RTCPReceiver::ModuleRtpRtcp {
 public:
  ModuleRtpRtcpImpl2(const Environment& env,
                     const RtpRtcpInterface::Configuration& configuration);
  ~ModuleRtpRtcpImpl2() override;

  // Receiver part.

  // Called when we receive an RTCP packet.
  // 接收到Rtcp数据包
  void IncomingRtcpPacket(
      rtc::ArrayView<const uint8_t> incoming_packet) override; 
  // 设置远端SSRC
  void SetRemoteSSRC(uint32_t ssrc) override;
  // 设置本地SSRC
  void SetLocalSsrc(uint32_t local_ssrc) override;

  // Sender part.
  // 设置发送负载频率
  void RegisterSendPayloadFrequency(int payload_type,
                                    int payload_frequency) override;
  // 注销一个发送载荷类型
  int32_t DeRegisterSendPayload(int8_t payload_type) override;
  // 是否允许在RTP头部扩展中使用混合的extmap配置
  void SetExtmapAllowMixed(bool extmap_allow_mixed) override;
  // 注册一个RTP头部扩展
  void RegisterRtpHeaderExtension(absl::string_view uri, int id) override;
  // 注销一个RTP头部扩展
  void DeregisterSendRtpHeaderExtension(absl::string_view uri) override;

  bool SupportsPadding() const override;
  bool SupportsRtxPayloadPadding() const override;

  // Get start timestamp.
  // 获取开始时间戳
  uint32_t StartTimestamp() const override;

  // Configure start timestamp, default is a random number.
  // 设置开始时间戳
  void SetStartTimestamp(uint32_t timestamp) override;

  uint16_t SequenceNumber() const override;

  // Set SequenceNumber, default is a random number.
  void SetSequenceNumber(uint16_t seq) override;

  void SetRtpState(const RtpState& rtp_state) override;
  void SetRtxState(const RtpState& rtp_state) override;
  RtpState GetRtpState() const override;
  RtpState GetRtxState() const override;

  void SetNonSenderRttMeasurement(bool enabled) override;

  uint32_t SSRC() const override { return rtcp_sender_.SSRC(); }

  // Semantically identical to `SSRC()` but must be called on the packet
  // delivery thread/tq and returns the ssrc that maps to
  // RtpRtcpInterface::Configuration::local_media_ssrc.
  uint32_t local_media_ssrc() const;

  void SetMid(absl::string_view mid) override;

  RTCPSender::FeedbackState GetFeedbackState();

  void SetRtxSendStatus(int mode) override;
  int RtxSendStatus() const override;
  std::optional<uint32_t> RtxSsrc() const override;

  void SetRtxSendPayloadType(int payload_type,
                             int associated_payload_type) override;

  std::optional<uint32_t> FlexfecSsrc() const override;

  // Sends kRtcpByeCode when going from true to false.
  // 设置发送状态
  int32_t SetSendingStatus(bool sending) override;
  // 检查当前是否在发送
  bool Sending() const override;

  // Drops or relays media packets.
  // 设置发送媒体状态
  void SetSendingMediaStatus(bool sending) override;
  // 检查是否处于发送媒体状态
  bool SendingMedia() const override;

  bool IsAudioConfigured() const override;

  void SetAsPartOfAllocation(bool part_of_allocation) override;
  // 发送RTP帧之前被调用。它提供了RTP帧的时间戳、捕获时间、载荷类型,以及一个标志来强制发送一个发送者报告
  bool OnSendingRtpFrame(uint32_t timestamp,
                         int64_t capture_time_ms,
                         int payload_type,
                         bool force_sender_report) override;
  // 检查是否可以发送给定的RTP包。它根据当前的网络条件和发送策略来决定是否可以发送这个包
  bool CanSendPacket(const RtpPacketToSend& packet) const override;
  // 为RTP包分配一个序列号。RTP序列号是一个递增的整数,用于在接收端正确地排序和重组RTP流
  void AssignSequenceNumber(RtpPacketToSend& packet) override;
  // 发送数据包
  void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                  const PacedPacketInfo& pacing_info) override;
  // 尝试发送数据包
  bool TrySendPacket(std::unique_ptr<RtpPacketToSend> packet,
                     const PacedPacketInfo& pacing_info) override;
  // 在一批RTP包发送完成后被调用。它可以用来执行一些清理工作,或者更新发送器的状态
  void OnBatchComplete() override;
  // 设置前向纠错(FEC)保护参数
  void SetFecProtectionParams(const FecProtectionParams& delta_params,
                              const FecProtectionParams& key_params) override;

  std::vector<std::unique_ptr<RtpPacketToSend>> FetchFecPackets() override;
  // 放弃重传操作
  void OnAbortedRetransmissions(
      rtc::ArrayView<const uint16_t> sequence_numbers) override;
  // RTP包被确认收
  void OnPacketsAcknowledged(
      rtc::ArrayView<const uint16_t> sequence_numbers) override;
  
  std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
      size_t target_size_bytes) override;
  // 获取发送的RTP数据包信息
  std::vector<RtpSequenceNumberMap::Info> GetSentRtpPacketInfos(
      rtc::ArrayView<const uint16_t> sequence_numbers) const override;
      
  // ...
  
  // Force a send of an RTCP packet.
  // Normal SR and RR are triggered via the task queue that's current when this
  // object is created.
  // 发送RTCP数据包
  int32_t SendRTCP(RTCPPacketType rtcpPacketType) override;
  // 获取发送流的数据计数器
  void GetSendStreamDataCounters(
      StreamDataCounters* rtp_counters,
      StreamDataCounters* rtx_counters) const override;

  // A snapshot of the most recent Report Block with additional data of
  // interest to statistics. Used to implement RTCRemoteInboundRtpStreamStats.
  // Within this list, the `ReportBlockData::source_ssrc()`, which is the SSRC
  // of the corresponding outbound RTP stream, is unique.
  // 获取最新的接收报告块数据
  std::vector<ReportBlockData> GetLatestReportBlockData() const override;
  // 获取发送者报告统计信息
  std::optional<SenderReportStats> GetSenderReportStats() const override;
  // 获取非发送者往返时间(RTT)统计信息
  std::optional<NonSenderRttStats> GetNonSenderRttStats() const override;

  // (REMB) Receiver Estimated Max Bitrate.
  void SetRemb(int64_t bitrate_bps, std::vector<uint32_t> ssrcs) override;
  void UnsetRemb() override;

  void SetTmmbn(std::vector<rtcp::TmmbItem> bounding_set) override;
  // 获取Rtp最大Packet大小
  size_t MaxRtpPacketSize() const override;
  // 设置Rtp最大Packet大小
  void SetMaxRtpPacketSize(size_t max_packet_size) override;

  // (NACK) Negative acknowledgment part.

  // Send a Negative acknowledgment packet.
  // TODO(philipel): Deprecate SendNACK and use SendNack instead.
  int32_t SendNACK(const uint16_t* nack_list, uint16_t size) override;

  void SendNack(const std::vector<uint16_t>& sequence_numbers) override;

  // Store the sent packets, needed to answer to a negative acknowledgment
  // requests.
  // 设置是否存储已发送的RTP包,以及存储多少个包
  void SetStorePacketsStatus(bool enable, uint16_t number_to_store) override;
  // 发送一个组合的RTCP包
  void SendCombinedRtcpPacket(
      std::vector<std::unique_ptr<rtcp::RtcpPacket>> rtcp_packets) override;

  // Video part.
  // 发送丢包通知
  int32_t SendLossNotification(uint16_t last_decoded_seq_num,
                               uint16_t last_received_seq_num,
                               bool decodability_flag,
                               bool buffering_allowed) override;
  // 获取发送速率
  RtpSendRates GetSendRates() const override;
  // 收到负确认(NACK)
  void OnReceivedNack(
      const std::vector<uint16_t>& nack_sequence_numbers) override;
  // 收到RTCP报告块
  void OnReceivedRtcpReportBlocks(
      rtc::ArrayView<const ReportBlockData> report_blocks) override;
  // 请求发送报告
  void OnRequestSendReport() override;
  // 设置视频比特率分配
  void SetVideoBitrateAllocation(
      const VideoBitrateAllocation& bitrate) override;

  RTPSender* RtpSender() override;
  const RTPSender* RtpSender() const override;

 private:
  FRIEND_TEST_ALL_PREFIXES(RtpRtcpImpl2Test, Rtt);
  FRIEND_TEST_ALL_PREFIXES(RtpRtcpImpl2Test, RttForReceiverOnly);
  // Rtp发送器上下文结构体
  struct RtpSenderContext {
    explicit RtpSenderContext(const Environment& env,
                              TaskQueueBase& worker_queue,
                              const RtpRtcpInterface::Configuration& config);
    // Storage of packets, for retransmissions and padding, if applicable.
    // packets的历史记录
    RtpPacketHistory packet_history;
    SequenceChecker sequencing_checker;
    // Handles sequence number assignment and padding timestamp generation.
    // 个负责RTP包序列号分配和填充时间戳生成的组件。它确保RTP包按照正确的顺序发送
    PacketSequencer sequencer RTC_GUARDED_BY(sequencing_checker);
    // Handles final time timestamping/stats/etc and handover to Transport.
    // 负责最终时间戳标记、统计信息收集等处理,并将RTP包交给传输层(Transport)的组件
    RtpSenderEgress packet_sender;
    // If no paced sender configured, this class will be used to pass packets
    // from `packet_generator_` to `packet_sender_`.
    /*
		如果没有配置节流发送器(paced sender),则non_paced_sender将被用来将packet_generator_
		生成的包直接传递给packet_sender_。NonPacedPacketSender是一个不进行节流控制的发送器,
		它简单地将包从一个生成器传递到另一个发送器
	*/
    RtpSenderEgress::NonPacedPacketSender non_paced_sender;
    // Handles creation of RTP packets to be sent.
    // 负责创建要发送的RTP包的组件。它根据输入的媒体流(如音频或视频)生成RTP包,
    // 包括添加RTP头、有效载荷和其他必要的RTP信息
    RTPSender packet_generator;
  };

  void set_rtt_ms(int64_t rtt_ms);
  int64_t rtt_ms() const;

  bool TimeToSendFullNackList(int64_t now) const;

  // Called on a timer, once a second, on the worker_queue_, to update the RTT,
  // check if we need to send RTCP report, send TMMBR updates and fire events.
  // 周期性更新RTT,检查是否需要发送RTCP报告
  void PeriodicUpdate();

  // Returns true if the module is configured to store packets.
  // 当前的配置下是否会存储packets
  bool StorePackets() const;
  // ...
};

这些函数和成员中,最重要的是结构体RtpSenderContext中的RtpSenderEgress packet_sender,这个成员调用了TrySendPacket()函数,将当前模块的packet送入到传输层进行传输。实现的方式如下,其中TrySendPacket()又调用了SendPacket()实现具体的发送任务

bool ModuleRtpRtcpImpl2::TrySendPacket(std::unique_ptr<RtpPacketToSend> packet,
                                       const PacedPacketInfo& pacing_info) {
  if (!packet || !CanSendPacket(*packet)) {
    return false;
  }
  AssignSequenceNumber(*packet);
  // 调用SendPacket()执行具体的发送任务
  SendPacket(std::move(packet), pacing_info);
  return true;
}

void ModuleRtpRtcpImpl2::SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                                    const PacedPacketInfo& pacing_info) {
  RTC_DCHECK_RUN_ON(&rtp_sender_->sequencing_checker);
  RTC_DCHECK(CanSendPacket(*packet));
  // 将packet送入到传输层,这里的rtp_sender_数据类型为RtpSenderEgress
  rtp_sender_->packet_sender.SendPacket(std::move(packet), pacing_info);
}

4.RTP出站发送器(RTPSenderEgress)

RTPSenderEgrees是RTP层面最后一个模块,其中的"Egress"翻译为”出站“或”出口“。这个模块的功能是将之前处理好的网络协议层信息(RTP和RTCP的信息)发送给传输层(Transport),交给其执行。这个类的声明位于modules/rtp_rtcp/source/rtp_sender_egress.h中

class RtpSenderEgress {
 public:
  // Helper class that redirects packets directly to the send part of this class
  // without passing through an actual paced sender.
  // 不进行节流的Packet发送器
  class NonPacedPacketSender : public RtpPacketSender {
   public:
    NonPacedPacketSender(TaskQueueBase& worker_queue,
                         RtpSenderEgress* sender,
                         PacketSequencer* sequencer);
    virtual ~NonPacedPacketSender();

    void EnqueuePackets(
    // ...
  };

  RtpSenderEgress(const Environment& env,
                  const RtpRtcpInterface::Configuration& config,
                  RtpPacketHistory* packet_history);
  ~RtpSenderEgress();
  // 发送数据包到下一层级
  void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
                  const PacedPacketInfo& pacing_info);
  void OnBatchComplete();
  uint32_t Ssrc() const { return ssrc_; }
  std::optional<uint32_t> RtxSsrc() const { return rtx_ssrc_; }
  std::optional<uint32_t> FlexFecSsrc() const { return flexfec_ssrc_; }

  RtpSendRates GetSendRates(Timestamp now) const;
  void GetDataCounters(StreamDataCounters* rtp_stats,
                       StreamDataCounters* rtx_stats) const;
  // 强制将发送数据包包含在比特率分配中
  void ForceIncludeSendPacketsInAllocation(bool part_of_allocation);
  // 媒体是否已被发送
  bool MediaHasBeenSent() const;
  // 设置媒体是否已被发送
  void SetMediaHasBeenSent(bool media_sent);
  // 设置时间戳偏移量
  void SetTimestampOffset(uint32_t timestamp);

  // For each sequence number in `sequence_number`, recall the last RTP packet
  // which bore it - its timestamp and whether it was the first and/or last
  // packet in that frame. If all of the given sequence numbers could be
  // recalled, return a vector with all of them (in corresponding order).
  // If any could not be recalled, return an empty vector.
  // 获取Rtp数据包信息
  std::vector<RtpSequenceNumberMap::Info> GetSentRtpPacketInfos(
      rtc::ArrayView<const uint16_t> sequence_numbers) const;

  void SetFecProtectionParameters(const FecProtectionParams& delta_params,
                                  const FecProtectionParams& key_params);
  std::vector<std::unique_ptr<RtpPacketToSend>> FetchFecPackets();

  // Clears pending status for these sequence numbers in the packet history.
  // 终止重传
  void OnAbortedRetransmissions(
      rtc::ArrayView<const uint16_t> sequence_numbers);

 private:
  // ...

  // Sends packet on to `transport_`, leaving the RTP module.
  // 将packet送入到transport模块,数据包离开RTP模块
  bool SendPacketToNetwork(const RtpPacketToSend& packet,
                           const PacketOptions& options,
                           const PacedPacketInfo& pacing_info);
  // 更新Rtp状态
  void UpdateRtpStats(Timestamp now,
                      uint32_t packet_ssrc,
                      RtpPacketMediaType packet_type,
                      RtpPacketCounter counter,
                      size_t packet_size);
  // ...
};

其中的核心函数为SendPacket()、CompleteSendPacket()和SendPacketToNetwork(),它们的调用关系是

SendPakcet()->CompleteSendPacket()->SendPacketToNetwork()

前面两个函数还会处理一些其他的信息,下面直接看最终出站的函数SendPacketToNetwork(),调用了transport_->SendRtp()将packet送入到transport模块中

bool RtpSenderEgress::SendPacketToNetwork(const RtpPacketToSend& packet,
                                          const PacketOptions& options,
                                          const PacedPacketInfo& pacing_info) {
  RTC_DCHECK_RUN_ON(worker_queue_);
  // SendRtp()将packet送入到transport模块中
  if (transport_ == nullptr || !transport_->SendRtp(packet, options)) {
    RTC_LOG(LS_WARNING) << "Transport failed to send packet.";
    return false;
  }

  env_.event_log().Log(std::make_unique<RtcEventRtpPacketOutgoing>(
      packet, pacing_info.probe_cluster_id));
  return true;
}

Transport的声明位于api/call/transport.h中,其中包括了发送Rtp和Rtcp两个数据包的纯虚函数

class Transport {
 public:
  virtual bool SendRtp(rtc::ArrayView<const uint8_t> packet,
                       const PacketOptions& options) = 0;
  virtual bool SendRtcp(rtc::ArrayView<const uint8_t> packet) = 0;

 protected:
  virtual ~Transport() {}
};

这里的SendRtp()由MediaChannelUtil::TransportForMediaChannels实现

5.媒体通道的实现(MediaChannelUtil)

MediaChannelUtil当中提供了TransportForMediaChannels类,该类封装了媒体通道的发送和接收功能,使得媒体通道可以通过统一的接口与不同的传输层(如RTP/RTCP传输)进行交互。最核心的函数为SendRtp(),能够用于发送RTP数据包,

除了发送RTP包,MediaChannelUtil还提供了接收RTCP包的功能。这包括处理RTCP报告块、发送器报告等,以支持媒体通道的监控和质量控制。另外,可能涉及将媒体通道适配到不同的传输协议和配置中,以确保媒体数据能够正确、高效地传输。

MediaChannelUtil的声明位于media/base/media_channel_impl.h中

/
/ The `MediaChannelUtil` class provides functionality that is used by
// multiple MediaChannel-like objects, of both sending and receiving
// types.
class MediaChannelUtil {
 public:
  MediaChannelUtil(webrtc::TaskQueueBase* network_thread,
                   bool enable_dscp = false);
  virtual ~MediaChannelUtil();
  // Returns the absolute sendtime extension id value from media channel.
  virtual int GetRtpSendTimeExtnId() const;
  // webrtc命名空间的transport类
  webrtc::Transport* transport() { return &transport_; }

  // Base methods to send packet using MediaChannelNetworkInterface.
  // These methods are used by some tests only.
  bool SendPacket(rtc::CopyOnWriteBuffer* packet,
                  const rtc::PacketOptions& options);

  bool SendRtcp(rtc::CopyOnWriteBuffer* packet,
                const rtc::PacketOptions& options);

  int SetOption(MediaChannelNetworkInterface::SocketType type,
                rtc::Socket::Option opt,
                int option);

  // Functions that form part of one or more interface classes.
  // Not marked override, since this class does not inherit from the
  // interfaces.

  // Corresponds to the SDP attribute extmap-allow-mixed, see RFC8285.
  // Set to true if it's allowed to mix one- and two-byte RTP header extensions
  // in the same stream. The setter and getter must only be called from
  // worker_thread.
  void SetExtmapAllowMixed(bool extmap_allow_mixed);
  bool ExtmapAllowMixed() const;

  void SetInterface(MediaChannelNetworkInterface* iface);
  // Returns `true` if a non-null MediaChannelNetworkInterface pointer is held.
  // Must be called on the network thread.
  bool HasNetworkInterface() const;

 protected:
  bool DscpEnabled() const;

  void SetPreferredDscp(rtc::DiffServCodePoint new_dscp);

 private:
  // Implementation of the webrtc::Transport interface required
  // by Call().
  // webrtc::Transport的具体实现
  class TransportForMediaChannels : public webrtc::Transport {
   public:
    TransportForMediaChannels(webrtc::TaskQueueBase* network_thread,
                              bool enable_dscp);

    virtual ~TransportForMediaChannels();

    // Implementation of webrtc::Transport
    // webrtc::Transport的具体实现,发送Rtp数据
    bool SendRtp(rtc::ArrayView<const uint8_t> packet,
                 const webrtc::PacketOptions& options) override;
    // 发送Rtcp数据
    bool SendRtcp(rtc::ArrayView<const uint8_t> packet) override;

    // Not implementation of webrtc::Transport
    void SetInterface(MediaChannelNetworkInterface* iface);

    int SetOption(MediaChannelNetworkInterface::SocketType type,
                  rtc::Socket::Option opt,
                  int option);
    // 执行packet的发送
    bool DoSendPacket(rtc::CopyOnWriteBuffer* packet,
                      bool rtcp,
                      const rtc::PacketOptions& options);
    // 检查网络接口
    bool HasNetworkInterface() const {
      RTC_DCHECK_RUN_ON(network_thread_);
      return network_interface_ != nullptr;
    }
    // 查询DSCP是否被启用
    bool DscpEnabled() const { return enable_dscp_; }

    void SetPreferredDscp(rtc::DiffServCodePoint new_dscp);

   private:
    // This is the DSCP value used for both RTP and RTCP channels if DSCP is
    // enabled. It can be changed at any time via `SetPreferredDscp`.
    rtc::DiffServCodePoint PreferredDscp() const {
      RTC_DCHECK_RUN_ON(network_thread_);
      return preferred_dscp_;
    }

    // Apply the preferred DSCP setting to the underlying network interface RTP
    // and RTCP channels. If DSCP is disabled, then apply the default DSCP
    // value.
    void UpdateDscp() RTC_RUN_ON(network_thread_);

    int SetOptionLocked(MediaChannelNetworkInterface::SocketType type,
                        rtc::Socket::Option opt,
                        int option) RTC_RUN_ON(network_thread_);

    const rtc::scoped_refptr<webrtc::PendingTaskSafetyFlag> network_safety_
        RTC_PT_GUARDED_BY(network_thread_);
    webrtc::TaskQueueBase* const network_thread_;
    const bool enable_dscp_;
    MediaChannelNetworkInterface* network_interface_
        RTC_GUARDED_BY(network_thread_) = nullptr;
    rtc::DiffServCodePoint preferred_dscp_ RTC_GUARDED_BY(network_thread_) =
        rtc::DSCP_DEFAULT;
  };

  bool extmap_allow_mixed_ = false;
  TransportForMediaChannels transport_;
};

MediaChannelUtil::TransportForMediaChannels::SendRtp()的定义位于media/base/media_channel_impl.cc中,调用DoSendPacket()执行具体的packet发送任务

bool MediaChannelUtil::TransportForMediaChannels::SendRtp(
    rtc::ArrayView<const uint8_t> packet,
    const webrtc::PacketOptions& options) {
  auto send =
      [this, packet_id = options.packet_id,
       included_in_feedback = options.included_in_feedback,
       included_in_allocation = options.included_in_allocation,
       batchable = options.batchable,
       last_packet_in_batch = options.last_packet_in_batch,
       is_media = options.is_media,
       packet = rtc::CopyOnWriteBuffer(packet, kMaxRtpPacketLen)]() mutable {
        rtc::PacketOptions rtc_options;
        rtc_options.packet_id = packet_id;
        if (DscpEnabled()) {
          rtc_options.dscp = PreferredDscp();
        }
        rtc_options.info_signaled_after_sent.included_in_feedback =
            included_in_feedback;
        rtc_options.info_signaled_after_sent.included_in_allocation =
            included_in_allocation;
        rtc_options.info_signaled_after_sent.is_media = is_media;
        rtc_options.batchable = batchable;
        rtc_options.last_packet_in_batch = last_packet_in_batch;
        // 执行发送packet
        DoSendPacket(&packet, false, rtc_options);
      };
  // ...
}

DoSendPacket()的定义如下

bool MediaChannelUtil::TransportForMediaChannels::DoSendPacket(
    rtc::CopyOnWriteBuffer* packet,
    bool rtcp,
    const rtc::PacketOptions& options) {
  // ...
  // 如果不是Rtcp,则使用SendPacket()发送数据包
  return (!rtcp) ? network_interface_->SendPacket(packet, options)
                 : network_interface_->SendRtcp(packet, options);
}

这里的network_interface_的数据类型为MediaChannelNetworkInterface,这个类中只定义了一些纯虚函数,没有实现SendPacket(),SendPacket()的实现由BaseChannel给出

6.基础通道(BaseChannel)

BaseChannel是WebRTC中的通道层核心,为不同类型的媒体通道(如音频、视频和数据)提供了一个共同的接口和实现基础。另外,BaseChannel与PeerConnection和Transport层进行对接,管理底层的网络连接和数据传输。从RTP数据包传输的角度来说,BaseChannel中实现了将Transport模块中的packet送入到PeerConnection通道上。BaseChannel的声明位于pc/channel.h中,其中的pc表示”Peer Connection“。

由于BaseChannel的声明很长,这里截取部分

class BaseChannel : public ChannelInterface,
                    // TODO(tommi): Consider implementing these interfaces
                    // via composition.
                    public MediaChannelNetworkInterface,
                    public webrtc::RtpPacketSinkInterface {
  // ...
  // NetworkInterface implementation, called by MediaEngine
  // 发送packet
  bool SendPacket(rtc::CopyOnWriteBuffer* packet,
                  const rtc::PacketOptions& options) override;
  // 发送Rtcp数据包
  bool SendRtcp(rtc::CopyOnWriteBuffer* packet,
                const rtc::PacketOptions& options) override;

  // From RtpTransportInternal
  void OnWritableState(bool writable);
  // 检测到网络路由案发生变化
  void OnNetworkRouteChanged(std::optional<rtc::NetworkRoute> network_route);
  // 带有选项的Packet数据包发送
  bool SendPacket(bool rtcp,
                  rtc::CopyOnWriteBuffer* packet,
                  const rtc::PacketOptions& options);
}

其中最重要的是SendPacket()函数

bool BaseChannel::SendPacket(bool rtcp,
                             rtc::CopyOnWriteBuffer* packet,
                             const rtc::PacketOptions& options) {
  // ...
  if (!srtp_active()) {
    if (srtp_required_) {
      // The audio/video engines may attempt to send RTCP packets as soon as the
      // streams are created, so don't treat this as an error for RTCP.
      // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=6809
      // However, there shouldn't be any RTP packets sent before SRTP is set
      // up (and SetSend(true) is called).
      RTC_DCHECK(rtcp) << "Can't send outgoing RTP packet for " << ToString()
                       << " when SRTP is inactive and crypto is required";
      return false;
    }

    RTC_DLOG(LS_WARNING) << "Sending an " << (rtcp ? "RTCP" : "RTP")
                         << " packet without encryption for " << ToString()
                         << ".";
  }
  // ...
  // 如果不是rtcp,使用SendRtpPacket()传递packet
  return rtcp ? rtp_transport_->SendRtcpPacket(packet, options, PF_SRTP_BYPASS)
              : rtp_transport_->SendRtpPacket(packet, options, PF_SRTP_BYPASS);
}

rtp_transport_的数据类型为RtpTransportInternal,这是一个基础类,其中只定义了SendRtpPacket()的纯虚函数

// TODO(zhihuang): Pass the `packet` by copy so that the original data
// wouldn't be modified.
virtual bool SendRtpPacket(rtc::CopyOnWriteBuffer* packet,
                           const rtc::PacketOptions& options,
                           int flags) = 0;

virtual bool SendRtcpPacket(rtc::CopyOnWriteBuffer* packet,
                            const rtc::PacketOptions& options,
                            int flags) = 0;

从BaseChannel::SendPacket()中看,会先使用srtp_active(),考虑了Srtp的情况,所以这里SendRtpPacket()应该是由SrtpTransport实现

6.安全RTP传输(SrtpTransport)

SrtpTransport继承自RtpTransport,主要保障RTP的安全性,声明位于pc/srtp_transpory.h中

class SrtpTransport : public RtpTransport {
 public:
  SrtpTransport(bool rtcp_mux_enabled, const FieldTrialsView& field_trials);

  virtual ~SrtpTransport() = default;
  // 发送Rtp数据包
  bool SendRtpPacket(rtc::CopyOnWriteBuffer* packet,
                     const rtc::PacketOptions& options,
                     int flags) override;
  // 发送Rtcp数据包
  bool SendRtcpPacket(rtc::CopyOnWriteBuffer* packet,
                      const rtc::PacketOptions& options,
                      int flags) override;

  // The transport becomes active if the send_session_ and recv_session_ are
  // created.
  // 如果创建了发送和接收会话,则transport会被启用
  bool IsSrtpActive() const override;

  bool IsWritable(bool rtcp) const override;

  // Create new send/recv sessions and set the negotiated crypto keys for RTP
  // packet encryption. The keys can either come from SDES negotiation or DTLS
  // handshake.
  // 设置Rtp参数
  bool SetRtpParams(int send_crypto_suite,
                    const rtc::ZeroOnFreeBuffer<uint8_t>& send_key,
                    const std::vector<int>& send_extension_ids,
                    int recv_crypto_suite,
                    const rtc::ZeroOnFreeBuffer<uint8_t>& recv_key,
                    const std::vector<int>& recv_extension_ids);

  // Create new send/recv sessions and set the negotiated crypto keys for RTCP
  // packet encryption. The keys can either come from SDES negotiation or DTLS
  // handshake.
  // 设置Rtcp参数
  bool SetRtcpParams(int send_crypto_suite,
                     const rtc::ZeroOnFreeBuffer<uint8_t>& send_key,
                     const std::vector<int>& send_extension_ids,
                     int recv_crypto_suite,
                     const rtc::ZeroOnFreeBuffer<uint8_t>& recv_key,
                     const std::vector<int>& recv_extension_ids);
  // ...
}

SrtpTransport::SendRtpPacket()的定义位于pc/srtp_transport.cc中,其中最后会调用SendPacket()发送packet

bool SrtpTransport::SendRtpPacket(rtc::CopyOnWriteBuffer* packet,
                                  const rtc::PacketOptions& options,
                                  int flags) {
  // ...
  return SendPacket(/*rtcp=*/false, packet, updated_options, flags);
}

值得注意的是,SrtpTransport中并没有实现SendPacket()函数,而是继承自其父类RtpTransport中的SendPacket(),定义位于pc/rtp_transport.cc中

bool RtpTransport::SendPacket(bool rtcp,
                              rtc::CopyOnWriteBuffer* packet,
                              const rtc::PacketOptions& options,
                              int flags) {
  rtc::PacketTransportInternal* transport = rtcp && !rtcp_mux_enabled_
                                                ? rtcp_packet_transport_
                                                : rtp_packet_transport_;
  // 发送packet
  int ret = transport->SendPacket(packet->cdata<char>(), packet->size(),
                                  options, flags);
  if (ret != static_cast<int>(packet->size())) {
    if (set_ready_to_send_false_if_send_fail_) {
      // TODO: webrtc:361124449 - Remove SetReadyToSend if field trial
      // WebRTC-SetReadyToSendFalseIfSendFail succeed 2024-12-01.
      if (transport->GetError() == ENOTCONN) {
        RTC_LOG(LS_WARNING) << "Got ENOTCONN from transport.";
        SetReadyToSend(rtcp, false);
      }
    }
    return false;
  }
  return true;
}

在上面的调用之中,rtp_packet_transport_由RtpTransport::SetRtpPacketTransport()确定,这个函数会在DtlsSrtpTransport::SetDtlsTransports()中调用,所以这里的transport使用的SendPacket()函数由DtlsSrtpTransport这个类来实现

7.DTLS-SRTP 传输(DtlsSrtpTransport)

DtlsSrtpTransport结合了DTLS(Datagram Transport Layer Security)的密钥交换功能和 SRTP(Secure Real-time Transport Protocol)的媒体加密功能,为WebRTC提供安全保障。DTLS 用于在通信双方之间安全地协商加密密钥,而 SRTP 则使用这些密钥来加密实时媒体流(如音频和视频),一旦 DTLS 握手完成,DtlsSrtpTransport 确保通过该通道发送的 RTP 或 RTCP 数据被安全地加密和保护。这意味着数据在传输过程中不会被窃听或篡改,从而保护通信的隐私和完整性。这个类声明在pc/dtls_srtp_transport.h中

// The subclass of SrtpTransport is used for DTLS-SRTP. When the DTLS handshake
// is finished, it extracts the keying materials from DtlsTransport and
// configures the SrtpSessions in the base class.
/*
	SrtpTransport 的子类用于 DTLS-SRTP。当 DTLS 握手完成后,它从 DtlsTransport 中提取
	密钥材料,并在基类中配置 SrtpSessions
*/
class DtlsSrtpTransport : public SrtpTransport {
 public:
  DtlsSrtpTransport(bool rtcp_mux_enabled, const FieldTrialsView& field_trials);

  // Set P2P layer RTP/RTCP DtlsTransports. When using RTCP-muxing,
  // `rtcp_dtls_transport` is null.
  // 设置 P2P 层的 RTP/RTCP DtlsTransports。当使用 RTCP-muxing 时,`rtcp_dtls_transport` 为 null
  void SetDtlsTransports(cricket::DtlsTransportInternal* rtp_dtls_transport,
                         cricket::DtlsTransportInternal* rtcp_dtls_transport);
  // 启用或禁用RTCP多路复用
  void SetRtcpMuxEnabled(bool enable) override;

  // Set the header extension ids that should be encrypted.
  // 更新应该被加密的发送方RTP头部扩展ID列表
  void UpdateSendEncryptedHeaderExtensionIds(
      const std::vector<int>& send_extension_ids);
  // 更新应该被加密的接收方RTP头部扩展ID列表
  void UpdateRecvEncryptedHeaderExtensionIds(
      const std::vector<int>& recv_extension_ids);
  // 检测到DTLS状态发生变化
  void SetOnDtlsStateChange(std::function<void(void)> callback);

  // If `active_reset_srtp_params_` is set to be true, the SRTP parameters will
  // be reset whenever the DtlsTransports are reset.
  // 设置是否在DTLS传输被重置时主动重置SRTP参数
  void SetActiveResetSrtpParams(bool active_reset_srtp_params) {
    active_reset_srtp_params_ = active_reset_srtp_params;
  }

 private:
  // ...
  // Owned by the TransportController.
  cricket::DtlsTransportInternal* rtp_dtls_transport_ = nullptr;
  cricket::DtlsTransportInternal* rtcp_dtls_transport_ = nullptr;

  // The encrypted header extension IDs.
  std::optional<std::vector<int>> send_extension_ids_;
  std::optional<std::vector<int>> recv_extension_ids_;

  bool active_reset_srtp_params_ = false;
  std::function<void(void)> on_dtls_state_change_;
};

使用SetDtlsTransport()来配置RtpTransport::SendPacket()中的transport,如下所示

void DtlsSrtpTransport::SetDtlsTransports(
    cricket::DtlsTransportInternal* rtp_dtls_transport,
    cricket::DtlsTransportInternal* rtcp_dtls_transport) {
  // ...
  SetRtcpDtlsTransport(rtcp_dtls_transport);
  SetRtcpPacketTransport(rtcp_dtls_transport);

  RTC_LOG(LS_INFO) << "Setting RTP Transport on " << transport_name
                   << " transport " << rtp_dtls_transport;
  SetRtpDtlsTransport(rtp_dtls_transport);
  // 设置rtp_dtls_transport为RtpTransport::SendPacket()中的的transport
  // rtp_dtls_transport的数据类型为cricket::DtlsTransportInternal
  // SetRtpPacketTransport()的定义位于RtpTransport当中
  SetRtpPacketTransport(rtp_dtls_transport);

  MaybeSetupDtlsSrtp();
}

从代码中看,使用rtp_dtls_transport初始化,rtp_dtls_transport的数据类型为cricket::DtlsTransportInternal*,这是一个基础类,其实现由DtlsTransport给出。

在WebRTC中,存在两个DtlsTransport的定义,分别位于pc文件夹和p2p/base两个文件夹,这两者的作用有所区别,p2p/base下的dtls_transport.h提供了底层的DTLS传输功能,包括数据包的发送和接收,而pc下的 dtls_transport.h提供了与高层API交互的接口,用于管理和配置DTLS传输。这里需要使用p2p/base,执行RTP数据包的发送

8.DTLS传输(DtlsTransport)

DTLS传输定义位于p2p/base/dtls_transport.h中,声明了数据包发送和接收的函数

// This class provides a DTLS SSLStreamAdapter inside a TransportChannel-style
// packet-based interface, wrapping an existing TransportChannel instance
// (e.g a P2PTransportChannel)
/*
	这个类在TransportChannel风格的基于数据包的接口内提供了一个DTLS SSLStreamAdapter,
	包装了一个现有的TransportChannel实例(例如P2PTransportChannel)。
*/

// Here's the way this works:
//
//   DtlsTransport {
//       SSLStreamAdapter* dtls_ {
//           StreamInterfaceChannel downward_ {
//               IceTransportInternal* ice_transport_;
//           }
//       }
//   }
//
//   - Data which comes into DtlsTransport from the underlying
//     ice_transport_ via OnReadPacket() is checked for whether it is DTLS
//     or not, and if it is, is passed to DtlsTransport::HandleDtlsPacket,
//     which pushes it into to downward_. dtls_ is listening for events on
//     downward_, so it immediately calls downward_->Read().
//
/*
		通过OnReadPacket()从底层ice_transport_传入DtlsTransport的数据会被检查是否为DTLS数据,
		如果是,会被传递给DtlsTransport::HandleDtlsPacket,该函数将其推送到downward_。dtls_
		监听downward_上的事件,因此它会立即调用downward_->Read()。
*/

//   - Data written to DtlsTransport is passed either to downward_ or directly
//     to ice_transport_, depending on whether DTLS is negotiated and whether
//     the flags include PF_SRTP_BYPASS
//
/*
		写入DtlsTransport的数据会被传递给downward_或者直接传递给ice_transport_,
		这取决于是否协商了DTLS以及标志是否包含PF_SRTP_BYPASS。

*/
//   - The SSLStreamAdapter writes to downward_->Write() which translates it
//     into packet writes on ice_transport_.
//
/*
		SSLStreamAdapter 写入到 downward_->Write(),这将其转换为在 ice_transport_ 上的数据包写入
*/
// This class is not thread safe; all methods must be called on the same thread
// as the constructor.
// 这个类不是线程安全的;所有方法都必须在与构造函数相同的线程上调用
class DtlsTransport : public DtlsTransportInternal {
 public:
  // `ice_transport` is the ICE transport this DTLS transport is wrapping.  It
  // must outlive this DTLS transport.
  //
  // `crypto_options` are the options used for the DTLS handshake. This affects
  // whether GCM crypto suites are negotiated.
  //
  // `event_log` is an optional RtcEventLog for logging state changes. It should
  // outlive the DtlsTransport.
  DtlsTransport(
      IceTransportInternal* ice_transport,
      const webrtc::CryptoOptions& crypto_options,
      webrtc::RtcEventLog* event_log,
      rtc::SSLProtocolVersion max_version = rtc::SSL_PROTOCOL_DTLS_12);

  ~DtlsTransport() override;

  DtlsTransport(const DtlsTransport&) = delete;
  DtlsTransport& operator=(const DtlsTransport&) = delete;

  // ...

  // Called to send a packet (via DTLS, if turned on).
  int SendPacket(const char* data,
                 size_t size,
                 const rtc::PacketOptions& options,
                 int flags) override;

  // ...

  IceTransportInternal* ice_transport() override;

  // Underlying ice_transport, not owned by this class.
  IceTransportInternal* const ice_transport_;
  std::unique_ptr<rtc::SSLStreamAdapter> dtls_;  // The DTLS stream
  // ...
};

其中最核心的发送函数SendPacket()的定义如下

// Called from upper layers to send a media packet.
int DtlsTransport::SendPacket(const char* data,
                              size_t size,
                              const rtc::PacketOptions& options,
                              int flags) {
  if (!dtls_active_) {
    // Not doing DTLS.
    // 不进行dtls,直接发送packet
    return ice_transport_->SendPacket(data, size, options);
  }

  switch (dtls_state()) {
	// ...
    case webrtc::DtlsTransportState::kConnected:
      if (flags & PF_SRTP_BYPASS) {
        RTC_DCHECK(!srtp_ciphers_.empty());
        if (!IsRtpPacket(rtc::MakeArrayView(
                reinterpret_cast<const uint8_t*>(data), size))) {
          return -1;
        }
		// ICE接口来发送packet
        return ice_transport_->SendPacket(data, size, options);
      } else {
      	// ...
	  }
  }
}

这里进一步使用ice_transport_来发送数据包,这是一个IceTransportInternal数据类型,其SendPacket()的实现由P2PTransportChannel给出

9.P2P传输通道(P2PTransportChannel)

// P2PTransportChannel manages the candidates and connection process to keep
// two P2P clients connected to each other.
class RTC_EXPORT P2PTransportChannel : public IceTransportInternal,
                                       public IceAgentInterface {
 public:
  static std::unique_ptr<P2PTransportChannel> Create(
      absl::string_view transport_name,
      int component,
      webrtc::IceTransportInit init);

  // For testing only.
  // TODO(zstein): Remove once AsyncDnsResolverFactory is required.
  P2PTransportChannel(absl::string_view transport_name,
                      int component,
                      PortAllocator* allocator,
                      const webrtc::FieldTrialsView* field_trials = nullptr);

  ~P2PTransportChannel() override;

  P2PTransportChannel(const P2PTransportChannel&) = delete;
  P2PTransportChannel& operator=(const P2PTransportChannel&) = delete;
  // ...
  // From TransportChannel:
  int SendPacket(const char* data,
                 size_t len,
                 const rtc::PacketOptions& options,
                 int flags) override;
  // ...
}

SendPacket()的定义如下

/ Send data to the other side, using our selected connection.
int P2PTransportChannel::SendPacket(const char* data,
                                    size_t len,
                                    const rtc::PacketOptions& options,
                                    int flags) {
  // ...
  // 发送数据包,送入到网络中进行传输
  int sent = selected_connection_->Send(data, len, modified_options);
  // ...
}

selected_connection_->Send()中使用SendTo()发送数据包到给定的IP地址

int ProxyConnection::Send(const void* data,
                          size_t size,
                          const rtc::PacketOptions& options) {
  // ...
  int sent =
      port_->SendTo(data, size, remote_candidate_.address(), options, true);
  // ...
}

SendTo()函数根据具体的协议有所不同,例如UDP协议和TCP协议

int UDPPort::SendTo(const void* data,
                    size_t size,
                    const rtc::SocketAddress& addr,
                    const rtc::PacketOptions& options,
                    bool payload);

int TCPPort::SendTo(const void* data,
                    size_t size,
                    const rtc::SocketAddress& addr,
                    const rtc::PacketOptions& options,
                    bool payload);

SendTo()之后就是具体的网络部分了,这样视频流发送过程中类的简单分析就结束了


http://www.kler.cn/a/392200.html

相关文章:

  • 【电子通识】PWM驱动让有刷直流电机恒流工作
  • HTML5 动画效果:淡入淡出(Fade In/Out)详解
  • OpenAI 故障复盘 - 阿里云容器服务与可观测产品如何保障大规模 K8s 集群稳定性
  • JS进阶--JS听到了不灭的回响
  • flutter 独立开发之笔记
  • C 语言奇幻之旅 - 第16篇:C 语言项目实战
  • 【STM32】基于SPI协议读写SD,详解!
  • HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)技能调用接入方案
  • OpenCV相机标定与3D重建(1)概述
  • AI驱动的个性化购物推荐系统
  • 如何将Photoshop切换为中文界面
  • 46.第二阶段x86游戏实战2-拆解自动打怪流程
  • 一文总结java语法规则
  • 代码修改材质参数
  • 美团代付微信小程序 read.php 任意文件读取漏洞复现
  • 【计算机网络】UDP网络程序
  • 汇总常用的114款AI视频创作工具,堪称运营神器,收藏备用!
  • OpenBayes 一周速览丨VASP 教程上线!HPC 助力材料计算;AllClear 公共云层去除数据集发布,含超 23k 个全球分布的兴趣区域
  • 一文了解珈和科技在农业遥感领域的服务内容和能力
  • 智慧医疗:纹理特征VS卷积特征
  • Kafka - 启用安全通信和认证机制_SSL + SASL
  • Python学习从0到1 day27 Python 高阶技巧 ④ 设计模式 — 工厂模式
  • 计算机组成原理——提高存储器访问速度
  • 发布一个npm组件库包
  • Java[面试题]-真实面试2.0
  • KALI-sqlmap更新