deeponet作者相关三篇论文链接(理论基础、实用拓展、外推)
第一篇 理论基础(DeepXDE<=0.11.2,低版本):
https://github.com/lululxvi/deeponet
nature题目及其链接:Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators | Nature Machine Intelligence
arxiv:https://arxiv.org/abs/1910.03193
arxiv题目:DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
DeepONet:基于算子的普遍逼近定理学习用于识别微分方程的非线性算子
第二篇 实用拓展(DeepXDE>0.11.2,高版本):
题目:基于 FAIR 数据对两个神经算子(及实际扩展)进行全面、公平的比较
https://arxiv.org/abs/2111.05512
https://github.com/lululxvi/deeponet
第三篇 外推
题目:Reliable extrapolation of deep neural operators informed by physics or sparse observation基于物理或稀疏观测的深度神经算子的可靠外推
论文链接:https://arxiv.org/abs/2212.06347
博主自己电脑上的机翻的中文翻译:[2212.06347] Reliable extrapolation of deep neural operators informed by physics or sparse observations
code:GitHub - lu-group/deeponet-extrapolation: DeepONet extrapolation
原文链接:https://blog.csdn.net/weixin_44162814/article/details/143734531