【C++】用红黑树封装set和map
在C++标准库中,set容器和map容器的底层都是红黑树,它们的各种接口都是基于红黑树来实现的,我们在这篇文章中已经模拟实现了红黑树 ->【C++】红黑树,接下来我们在此红黑树的基础上来看看如何封装set和map。
一、共用一颗红黑树
我们在这篇文章中 ->【C++】set容器和map容器的基本使用,清楚set是key搜索场景的结构,map是key/value搜索场景的结构。所以要用红黑树封装它们两个就需要2棵红黑树,这两颗红黑树整体逻辑差不多一样,只是结点中的元素数据类型不一样,一个是K类型,一个是pair<K,V>类型。两棵极为相似的树,只是一点不同,如果实现两个会显得冗余,那么我们就可以考虑使用模板来将结点中的数据类型泛型化,使set和map底层共用一个红黑树。
我在先前的文章中已经实现了红黑树,它是解决key/value搜索场景的,我将那篇文章的源代码裁剪了一些重要的部分,大家这里只需看懂这部分的功能:
template<class K, class V>
struct RBTreeNode
{
pair<K, V> _kv;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
template<class K, class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
parent = cur,cur = cur->_right;
else if (cur->_kv.first > kv.first)
parent = cur,cur = cur->_left;
else
return false;
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
parent->_right = cur;
else
parent->_left = cur;
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
private:
Node* _root = nullptr;
};
此时,结点中数据类型是pair,这样我们就把这个结点的数据类型写"死"了,set容器底层就不能用这个红黑树,我们要实现set和map共用一棵红黑树,所以就需要把结点的数据类型泛型化(根据传来的类型来确定具体的类型):
template<class T> //如果是set就传K,如果是map就传pair<K,V>
struct RBTreeNode
{
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
RBTreeNode(const T& data)
:_data(data)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
那么,RBTree也要跟着改:
template<class T>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
bool Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_data.first < data.first)
parent = cur,cur = cur->_right;
else if (cur->_data.first > data.first)
parent = cur,cur = cur->_left;
else
return false;
}
cur = new Node(data);
cur->_col = RED;
if (parent->_data.first < data.first)
parent->_right = cur;
else
parent->_left = cur;
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
private:
Node* _root = nullptr;
};
封装set:
//MySet.h
#include "RBTree.h"
namespace blue
{
template<class K>
class set
{
public:
bool insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K> _t;
};
}
封装map:
//MyMap.h
#include "RBTree.h"
namespace blue
{
template<class K,class V>
class map
{
public:
bool insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
private:
RBTree<pair<K, V>> _t;
};
}
这样我们就可以通过模板参数T来控制set和map共用一棵红黑树了!
二、 红黑树中Insert带来的问题
通过观察上面红黑中Insert中的代码,其实会有问题:
我们的data可能是K类型,也可能是pair<K,V>类型。如果是后者,那么这样比较当然没问题,那如果是前者,就不能这样比较,所以我们要对这个部分进行修改。
怎么修改呢?去掉.first吗?
我们如果去掉.first,那么不管是K还是pair<K,V>都可以进行比较,以pair<K,V>类型为例,两个pair类型进行比较时先比较K,如果K相同则比较V,这与我们的本意相违背,我们的要求是只比较K的值,不能让V的值参与比较!所以我们要解决问题,不能仅仅是去掉.first。
我们可以在set和map类中写一个仿函数,通过仿函数来获取K,具体做法如下:
#include "RBTree.h"
namespace blue
{
template<class K>
class set
{
struct KeyOfSet
{
const K& operator()(const K& key)
{
return key;
}
};
public:
bool insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K,KeyOfSet> _t;
};
}
#include "RBTree.h"
namespace blue
{
template<class K,class V>
class map
{
struct KeyOfMap
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
bool insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
private:
RBTree<pair<K, V>,KeyOfMap> _t;
};
}
这时我们就需要在红黑树中加一个模板参数:
我们明确知道map是需要这个仿函数来获取K值的,但是在set中也写一个仿函数来获取K值,有人开始会觉得这是多余的,因为set中的元素类型本身就是K类型,但是不要忽略一点,set和map是共用同一份模板的,map需要这个仿函数,那么set也必须有这个仿函数,set这里的仿函数就是为了兼容map,这时,红黑树的第二个模板参数KeyOfT就出现了。
三、erase和find带的来问题
我们知道set容器和map容器都有erase和find接口,这两个接口都是根据K值来进行的,如果我们要在红黑树中实现这两个接口那么必须知道K的值,我们根据K的值来进行删除和查找。但是现在,我们自己实现的这个红黑树中并没有办法拿到K的值,也就是说在我们目前这棵红黑树中若要实现erase和find是做不到的!
为了获取K的值,我们可以在RBTree中再添加一个模板参数K,专门用来获取K的值:
在set中:
在map中:
其实,这里的set中传了两个K,第一个K就是兼容map的。因为map需要这个K,那么在TRBTree中就必须增加一个模板参数,所以set就必须传一个K。
那么在RBTree中erase和find接口就可以这样写:
bool find(const K& key)
{
//...
}
bool erase(const K& key)
{
//...
}
四、迭代器
红黑树的迭代器和我们在模拟实现list时思路是一样的,因为红黑树的底层空间是不连续的,所以我们不能直接"typedef Node* iterator",我们要单独用一个类型封装结点的指针,再通过重载运算
符实现,让迭代器具有像指针一样访问的行为:
//Ref和Ptr是为了兼容普通迭代器和const迭代器
template<class T,class Ref,class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node; //当前结点指针
RBTreeIterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &(_node->_data);
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
};
因为set和map都是双向迭代器,所以它们的迭代器应该要支持++和--操作,由于它们的迭代器是复用红黑树的,所以红黑树中的迭代器也要实现++和--操作,list迭代器的++或--操作实现起来非常简单,只需利用next指针就好;反观红黑树,它的++/--操作要求必须满足中序遍历规则,红黑树的中序遍历是有序的,假设某棵红黑树的中序遍历是"1 3 5 6 7 9" ,如果迭代器在3这个位置,那么++后就必须到5,--后就必须到1。迭代器++的核心逻辑就是不看全局,只看局部,只考虑当前中序局部要访问的下⼀个结点。
那么如何实现++操作呢?(分为以下几种情况)
假设当前迭代器"指向"cur位置,cur的父结点为parent。
1、cur的右子树存在
++后,只需找到右子树的最左结点即可。
2、cur的右子树为空
(1)cur是parent的左孩子
直接返回parent。(此时parent就是我们需要找的结点)
(2)cur是parent的右孩子
说明以parent为根的子树已经遍历完了,接下来让cur=parent,parent=cur->_parent,然后在做判断。最坏情况下,cur = _root,parent=nullptr,这时直接返回parent即可,我们这里让结束位置为nullptr。
代码实现:
Self& operator++()
{
Node* cur = _node;
Node* parent = cur->_parent;
if (cur->_right) //右子树不为空,找右子树的最左结点
{
cur = cur->_right;
while (cur->_left)
cur = cur->_left;
_node = cur;
}
else
{
while (parent && parent->_right == cur)
{
cur = parent;
parent = cur->_parent;
}
//直到cur是parent的左,那么parent就是我们的目标
//极端情况下,parent走到nullptr,这说明整棵树已经访问完了,直接返回nullptr(parent)
_node = parent;
}
return *this;
}
那么如何实现--操作呢?(分为以下几种情况)
迭代器--的实现跟++的思路完全类似,逻辑正好反过来即可,因为它访问顺序是右子树->根结点->
左子树。
假设当前迭代器"指向"cur位置,cur的父结点为parent。
1、cur的左子树存在
--后,只需找到左子树的最右结点即可。
2、cur的左子树为空
(1)cur是parent的右孩子
直接返回parent。(此时parent就是我们需要找的结点)
(2)cur是parent的左孩子
说明以parent为根的子树已经遍历完了,接下来让cur=parent,parent=cur->_parent,然后在做判断。
代码实现:
Self& operator--()
{
Node* cur = _node;
Node* parent = cur->_parent;
if (cur->_left) //左子树不为空,找左子树的最右结点
{
cur = cur->_left;
while (cur->_right)
cur = cur->_right;
_node = cur;
}
else
{
while (parent && parent->_left == cur)
{
cur = parent;
parent = cur->_parent;
}
//直到cur是parent的右,那么parent就是我们的目标
_node = parent;
}
return *this;
}
完成这一步,我们迭代器的封装任务差不多已经完成了,接下来我们需要在红黑树中实现Begin和End:
public:
typedef RBTreeIterator<T, T&, T*> Iterator; //普通迭代器
typedef RBTreeIterator<T, const T&,const T*> ConstIterator; //const迭代器
Iterator Begin()
{
Node* cur = _root;
while (cur->_left)
cur = cur->_left;
return Iterator(cur);
}
Iterator End()
{
return Iterator(nullptr); //我们这里让nullptr当最终结点
}
ConstIterator Begin() const
{
Node* cur = _root;
while (cur->_left)
cur = cur->_left;
return ConstIterator(cur);
}
ConstIterator End() const
{
return ConstIterator(nullptr);
}
在set中:
public:
typedef typename RBTree<K, K, KeyOfSet>::Iterator iterator;
typedef typename RBTree<K, K, KeyOfSet>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
在map中:
public:
typedef typename RBTree<K, pair<K, V>, KeyOfMap>::Iterator iterator;
typedef typename RBTree<K, pair<K, V>, KeyOfMap>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
我们大致的任务已经完成了,接下来我们来写一段代码验证一下(看看是否会出现错误):
//Test.cpp
#include "MyMap.h"
#include "MySet.h"
void TestSet()
{
blue::set<int> s;
s.insert(5);
s.insert(1);
s.insert(3);
s.insert(2);
s.insert(6);
blue::set<int>::iterator sit = s.begin();
while (sit != s.end())
{
cout << *sit << " ";
++sit;
}
cout << endl;
}
void TestMap()
{
blue::map<string, string> dict;
dict.insert({ "sort", "排序" });
dict.insert({ "left", "左边" });
dict.insert({ "right", "右边" });
blue::map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
}
int main()
{
TestSet();
cout << "-----------------------" << endl;
TestMap();
return 0;
}
运行结果:
运行结果暂时没有什么问题。
这里有一个bug,看下面测试代码:
void Print(const blue::set<int>& s)
{
bit::set<int>::const_iterator it = s.end();
while (it != s.begin())
{
--it;
cout << *it << " ";
}
cout << endl;
}
我们上面将end()指向nullptr,那么如果逆向遍历,--it就会出现错误,所以我们在--it时先判断一下,如果指向空,那么就修改_node为红黑树的最后一个结点,那么,问题又来了,怎么获得最后一个结点呢?所以我们需要知道红黑树的头结点,所以,我们在RBTreeIterator这个类中还需要一个成员变量来记录根节点:
修改operator--如下:
Self& operator--()
{
if (_node == nullptr)
{
Node* cur = _root;
while (cur->_right)
cur = cur->_right;
_node = cur;
return *this;
}
Node* cur = _node;
Node* parent = cur->_parent;
if (cur->_left) //左子树不为空,找左子树的最右结点
{
cur = cur->_left;
while (cur->_right)
cur = cur->_right;
_node = cur;
}
else
{
while (parent && parent->_left == cur)
{
cur = parent;
parent = cur->_parent;
}
//直到cur是parent的右,那么parent就是我们的目标
_node = parent;
}
return *this;
}
解决完上述问题,还有一个问题,set和map中的K的值是不允许修改的,因为若修改就可能会破坏红黑树的结构,但我们写的代码中通过普通迭代器是能够修改的,如果要解决可以这样修改:
在set中:
在map中:
五、[]
好了,好了,到这里我们将上面的坑都踩完了,接下来最后最后一个功能,也是比较重要的,就是处理map中[]的实现逻辑:
map中的[]的逻辑其实就是利用了insert接口。
我们在红黑树中实现Insert的返回值是bool,接下来我们将它改为pair<Iterator,bool>类型:
pair<Iterator,bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
//return true;
return { Iterator(_root, _root),true };
}
Node* parent = nullptr;
Node* cur = _root;
KeyOfT kot;
while (cur)
{
if (kot(cur->_data) < kot(data))
parent = cur, cur = cur->_right;
else if (kot(cur->_data) > kot(data))
parent = cur, cur = cur->_left;
else
//return false;
return { Iterator(cur, _root),false };
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED;
if (kot(parent->_data) < kot(data))
parent->_right = cur;
else
parent->_left = cur;
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
//return true;
return { Iterator(newnode, _root),true };
}
完成对Insert的调整后,在set和map的insert也要跟着调:
在set中:
在map中:
接下来,我们就着手实现[],在map中:
V& operator[](const K& key)
{
pair<iterator, bool> ret = _t.Insert({ key,V() });
return (ret.first)->second;
}
是不是非常简单!
六、其他问题
1、构造函数
RBTree() = default;
2、拷贝构造
RBTree(const RBTree<K, T, KeyOfT>& t)
{
_root = Copy(t._root);
}
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newnode = new Node(root->_data);
newnode->_left = Copy(root->_left);
newnode->_right = Copy(root->_right);
return newnode;
}
3、赋值重载
RBTree& operator=(RBTree tmp)
{
swap(tmp._root);
return *this;
}
4、析构函数
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
七、源码
(1)RBTree.h
#pragma once
#include <iostream>
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
RBTreeNode(const T& data)
:_data(data)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
//Ref和Ptr是为了兼容普通迭代器和const迭代器
template<class T,class Ref,class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node; //当前结点指针
Node* _root; //记录红黑树的根结点
RBTreeIterator(Node* node,Node* root)
:_node(node)
,_root(root)
{}
Self& operator++()
{
Node* cur = _node;
Node* parent = cur->_parent;
if (cur->_right) //右子树不为空,找右子树的最左结点
{
cur = cur->_right;
while (cur->_left)
cur = cur->_left;
_node = cur;
}
else
{
while (parent && parent->_right == cur)
{
cur = parent;
parent = cur->_parent;
}
//直到cur是parent的左,那么parent就是我们的目标
//极端情况下,parent走到nullptr,这说明整棵树已经访问完了,直接返回nullptr(parent)
_node = parent;
}
return *this;
}
Self& operator--()
{
if (_node == nullptr)
{
Node* cur = _root;
while (cur->_right)
cur = cur->_right;
_node = cur;
return *this;
}
Node* cur = _node;
Node* parent = cur->_parent;
if (cur->_left) //左子树不为空,找左子树的最右结点
{
cur = cur->_left;
while (cur->_right)
cur = cur->_right;
_node = cur;
}
else
{
while (parent && parent->_left == cur)
{
cur = parent;
parent = cur->_parent;
}
//直到cur是parent的右,那么parent就是我们的目标
_node = parent;
}
return *this;
}
Ref operator*() const
{
return _node->_data;
}
Ptr operator->() const
{
return &(_node->_data);
}
bool operator==(const Self& s) const
{
return _node == s._node;
}
bool operator!=(const Self& s) const
{
return _node != s._node;
}
};
template<class K,class T,class KeyOfT>
class RBTree
{
public:
RBTree() = default;
RBTree(const RBTree<K, T, KeyOfT>& t)
{
_root = Copy(t._root);
}
RBTree& operator=(RBTree tmp)
{
swap(tmp._root);
return *this;
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
public:
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, T&, T*> Iterator;
typedef RBTreeIterator<T, const T&,const T*> ConstIterator;
Iterator Begin()
{
Node* cur = _root;
while (cur->_left)
cur = cur->_left;
return Iterator(cur,_root);
}
Iterator End()
{
return Iterator(nullptr,_root);
}
ConstIterator Begin() const
{
Node* cur = _root;
while (cur->_left)
cur = cur->_left;
return ConstIterator(cur,_root);
}
ConstIterator End() const
{
return ConstIterator(nullptr,_root);
}
public:
pair<Iterator,bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
//return true;
return { Iterator(_root,_root),true };
}
Node* parent = nullptr;
Node* cur = _root;
KeyOfT kot;
while (cur)
{
if (kot(cur->_data) < kot(data))
parent = cur, cur = cur->_right;
else if (kot(cur->_data) > kot(data))
parent = cur, cur = cur->_left;
else
//return false;
return { Iterator(cur,_root),false };
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED;
if (kot(parent->_data) < kot(data))
parent->_right = cur;
else
parent->_left = cur;
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
//return true;
return { Iterator(newnode,_root),true };
}
private:
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* pParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (pParent->_left == parent)
pParent->_left = subL;
else
pParent->_right = subL;
subL->_parent = pParent;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
parentParent->_left = subR;
else
parentParent->_right = subR;
subR->_parent = parentParent;
}
}
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newnode = new Node(root->_data);
newnode->_left = Copy(root->_left);
newnode->_right = Copy(root->_right);
return newnode;
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
private:
Node* _root = nullptr;
};
(2)MySet.h
#pragma once
#include "RBTree.h"
namespace blue
{
template<class K>
class set
{
struct KeyOfSet
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, const K, KeyOfSet>::Iterator iterator;
typedef typename RBTree<K, const K, KeyOfSet>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
public:
pair<iterator,bool> insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K, const K, KeyOfSet> _t;
};
}
(3)MyMap.h
#pragma once
#include "RBTree.h"
namespace blue
{
template<class K,class V>
class map
{
struct KeyOfMap
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename RBTree<K, pair<const K, V>, KeyOfMap>::Iterator iterator;
typedef typename RBTree<K, pair<const K, V>, KeyOfMap>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
public:
pair<iterator,bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = _t.Insert({ key,V() });
return (ret.first)->second;
}
private:
RBTree<K, pair<const K, V>, KeyOfMap> _t;
};
}
(4)Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "MyMap.h"
#include "MySet.h"
void Print(const blue::set<int>& s)
{
blue::set<int>::const_iterator it = s.end();
while (it != s.begin())
{
--it;
cout << *it << " ";
}
cout << endl;
}
void TestSet()
{
blue::set<int> s;
s.insert(5);
s.insert(1);
s.insert(3);
s.insert(2);
s.insert(6);
blue::set<int>::iterator sit = s.begin();
//*sit += 10;
while (sit != s.end())
{
cout << *sit << " ";
++sit;
}
cout << endl;
Print(s);
}
void TestMap()
{
blue::map<string, string> dict;
dict.insert({ "sort", "排序" });
dict.insert({ "left", "左边" });
dict.insert({ "right", "右边" });
dict["left"] = "左边,剩余";
dict["insert"] = "插入";
dict["string"];
blue::map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
// 不能修改first,可以修改second
//it->first += 'x';
it->second += 'x';
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
}
int main()
{
TestSet();
cout << "-----------------------" << endl;
TestMap();
return 0;
}
八、总结
本篇内容到这里就结束啦,主要讲了如何用红黑树来封装set和map容器,希望对大家有帮助,祝生活愉快!