当前位置: 首页 > article >正文

Java NIO 核心知识总结

NIO 简介

在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。也就是说,当一个线程执行一个 I/O 操作时,它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈,因为需要为每个连接创建一个线程,而线程的创建和切换都是有开销的。

为了解决这个问题,在 Java1.4 版本引入了一种新的 I/O 模型 — NIO (New IO,也称为 Non-blocking IO) 。NIO 弥补了同步阻塞 I/O 的不足,它在标准 Java 代码中提供了非阻塞、面向缓冲、基于通道的 I/O,可以使用少量的线程来处理多个连接,大大提高了 I/O 效率和并发。

下图是 BIO、NIO 和 AIO 处理客户端请求的简单对比图(关于 AIO 的介绍,可以看我写的这篇文章:Java IO 模型详解,不是重点,了解即可)。

BIO、NIO 和 AIO 对比

⚠️需要注意:使用 NIO 并不一定意味着高性能,它的性能优势主要体现在高并发和高延迟的网络环境下。当连接数较少、并发程度较低或者网络传输速度较快时,NIO 的性能并不一定优于传统的 BIO 。

NIO 核心组件

NIO 主要包括以下三个核心组件:

  • Buffer(缓冲区):NIO 读写数据都是通过缓冲区进行操作的。读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。
  • Channel(通道):Channel 是一个双向的、可读可写的数据传输通道,NIO 通过 Channel 来实现数据的输入输出。通道是一个抽象的概念,它可以代表文件、套接字或者其他数据源之间的连接。
  • Selector(选择器):允许一个线程处理多个 Channel,基于事件驱动的 I/O 多路复用模型。所有的 Channel 都可以注册到 Selector 上,由 Selector 来分配线程来处理事件。

三者的关系如下图所示(暂时不理解没关系,后文会详细介绍):

Buffer、Channel和Selector三者之间的关系

Buffer(缓冲区)

在传统的 BIO 中,数据的读写是面向流的, 分为字节流和字符流。

在 Java 1.4 的 NIO 库中,所有数据都是用缓冲区处理的,这是新库和之前的 BIO 的一个重要区别,有点类似于 BIO 中的缓冲流。NIO 在读取数据时,它是直接读到缓冲区中的。在写入数据时,写入到缓冲区中。 使用 NIO 在读写数据时,都是通过缓冲区进行操作。

Buffer 的子类如下图所示。其中,最常用的是 ByteBuffer,它可以用来存储和操作字节数据。

Buffer 的子类

Buffer 的子类

你可以将 Buffer 理解为一个数组,IntBufferFloatBufferCharBuffer 等分别对应 int[]float[]char[] 等。

为了更清晰地认识缓冲区,我们来简单看看Buffer 类中定义的四个成员变量:

public abstract class Buffer {
    // Invariants: mark <= position <= limit <= capacity
    private int mark = -1;
    private int position = 0;
    private int limit;
    private int capacity;
}

这四个成员变量的具体含义如下:

  1. 容量(capacity):Buffer可以存储的最大数据量,Buffer创建时设置且不可改变;
  2. 界限(limit):Buffer 中可以读/写数据的边界。写模式下,limit 代表最多能写入的数据,一般等于 capacity(可以通过limit(int newLimit)方法设置);读模式下,limit 等于 Buffer 中实际写入的数据大小。
  3. 位置(position):下一个可以被读写的数据的位置(索引)。从写操作模式到读操作模式切换的时候(flip),position 都会归零,这样就可以从头开始读写了。
  4. 标记(mark):Buffer允许将位置直接定位到该标记处,这是一个可选属性;

并且,上述变量满足如下的关系:0 <= mark <= position <= limit <= capacity

另外,Buffer 有读模式和写模式这两种模式,分别用于从 Buffer 中读取数据或者向 Buffer 中写入数据。Buffer 被创建之后默认是写模式,调用 flip() 可以切换到读模式。如果要再次切换回写模式,可以调用 clear() 或者 compact() 方法。

position 、limit 和 capacity 之前的关系

Buffer 对象不能通过 new 调用构造方法创建对象 ,只能通过静态方法实例化 Buffer

这里以 ByteBuffer为例进行介绍:

Buffer 最核心的两个方法:

  1. get : 读取缓冲区的数据
  2. put :向缓冲区写入数据

除上述两个方法之外,其他的重要方法:

  • flip :将缓冲区从写模式切换到读模式,它会将 limit 的值设置为当前 position 的值,将 position 的值设置为 0。
  • clear: 清空缓冲区,将缓冲区从读模式切换到写模式,并将 position 的值设置为 0,将 limit 的值设置为 capacity 的值。
  • ……

Buffer 中数据变化的过程

import java.nio.*;

public class CharBufferDemo {
    public static void main(String[] args) {
        // 分配一个容量为8的CharBuffer
        CharBuffer buffer = CharBuffer.allocate(8);
        System.out.println("初始状态:");
        printState(buffer);

        // 向buffer写入3个字符
        buffer.put('a').put('b').put('c');
        System.out.println("写入3个字符后的状态:");
        printState(buffer);

        // 调用flip()方法,准备读取buffer中的数据,将 position 置 0,limit 的置 3
        buffer.flip();
        System.out.println("调用flip()方法后的状态:");
        printState(buffer);

        // 读取字符
        while (buffer.hasRemaining()) {
            System.out.print(buffer.get());
        }

        // 调用clear()方法,清空缓冲区,将 position 的值置为 0,将 limit 的值置为 capacity 的值
        buffer.clear();
        System.out.println("调用clear()方法后的状态:");
        printState(buffer);

    }

    // 打印buffer的capacity、limit、position、mark的位置
    private static void printState(CharBuffer buffer) {
        System.out.print("capacity: " + buffer.capacity());
        System.out.print(", limit: " + buffer.limit());
        System.out.print(", position: " + buffer.position());
        System.out.print(", mark 开始读取的字符: " + buffer.mark());
        System.out.println("\n");
    }
}

输出:

初始状态:
capacity: 8, limit: 8, position: 0

写入3个字符后的状态:
capacity: 8, limit: 8, position: 3

准备读取buffer中的数据!

调用flip()方法后的状态:
capacity: 8, limit: 3, position: 0

读取到的数据:abc

调用clear()方法后的状态:
capacity: 8, limit: 8, position: 0


http://www.kler.cn/a/393353.html

相关文章:

  • 群控系统服务端开发模式-应用开发-前端个人信息功能
  • 1.7 JS性能优化
  • js 获取某日期到现在的时长 js 数字补齐2位
  • NAT网络工作原理和NAT类型
  • UVC 输出视频格式修改和windows下数据分析
  • Android音频架构
  • 设计模式之责任链模式(Chain Of Responsibility)
  • Apache Doris 2.1.7 版本正式发布
  • Spring——单元测试
  • 阿里云和七牛云对象存储区别和实现
  • 大数据应用开发——实时数据采集
  • 外星人入侵
  • python成长技能之网络编程
  • HarmonyOS的@State装饰器的底层实现
  • elasticsearch实战应用理论实践!2W字带你全部了解elasticsearch
  • UNIX 域套接字
  • 【3D Slicer】的小白入门使用指南四
  • AIoT的协同计算
  • 解锁数据世界:从基础到精通的数据库探索之旅
  • Unity URP自定义后处理系统
  • SQL:给数据表字段拼接字符串
  • HarmonyOS和OpenHarmony区别是什么?鸿蒙和安卓IOS的区别是什么?
  • 除了防盗,特力康智能窨井盖还能监测井下环境吗?具体都监测些什么?
  • A029-基于Spring Boot的物流管理系统的设计与实现
  • 【Chapter 3】Machine Learning Classification Case_Prediction of diabetes-XGBoost
  • AI写作(四)预训练语言模型:开启 AI 写作新时代(4/10)