当前位置: 首页 > article >正文

3588 yolov8 onnx 量化转 rknn 并运行

本教程重点不在如何训练模型,重点是全流程链路,想学训练的可以网上找教程

环境

  • python 3.10.x
  • rknn-toolkit2-2.2.0
  • ultralytics_yolov8
  • rknn 驱动版本2.2

模型训练

  • yolov8仓库地址:https://github.com/airockchip/ultralytics_yolov8.git
  • 下载项目到本地后,按照yolov8流程正常训练即可,里面有导出onnx的代码,运行一下就会生成onnx模型
  • 只能用这个仓库进行训练,不能用yolov8官方仓库代码训练,因为需要兼容rknn npu算子,改了网络结构
# 安装项目
pip install -e .
# 修改配置文件,model字段改为训练好的模型路径
ultralytics/cfg/default.yaml
	model: runs/detect/train/weights/best.pt
# 模型导出onnx文件
python ultralytics/engine/exporter.py

服务器上安装(onnx转rknn)

  • 下载rknn-toolkit2
wget https://github.com/airockchip/rknn-toolkit2/archive/refs/tags/v2.2.0.zip
git clone https://gitee.com/agricultureiot/rknn-yolov8.git
  • 解压
unzip v2.2.0.zip

在这里插入图片描述

  • 安装(根据python版本)
pip install -r requirements_cp310-2.2.0.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install rknn_toolkit2-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

下载示例项目

git clone https://github.com/airockchip/rknn_model_zoo.git

准备校准集

  • 目的量化时矫正和测试模型
  • 从训练数据集中随机挑选20-50张数据集,尽量包含所有标签,放到指定目录
  • 编写txt索引文件,文件内容为20张图片的每个图片路径
# 参考目录结构
datasets
   ├── images
   | ├── 123.ipg
   | ├── ......
   | └── 456.jpg
   └── dataset.txt
  • 修改文件的数据集路径和rknn模型导出路径:examples/yolov8/python/convert.py

在这里插入图片描述

量化

  • onnx转为rknn模型
python convert.py yolov8n.onnx rk3588
  • yolov8n.onnx 模型网络结构 (不是yolov8s)

在这里插入图片描述

  • 转为rknn 后的模型网络结构

在这里插入图片描述

  • 如果结构不对,是无法运行的

运行(3588开发板上操作)

升级npu驱动版本

  • 新版npu驱动地址:https://github.com/airockchip/rknn-toolkit2/blob/master/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so
  • 将so替换到/usr/lib目录下,如果版本一致则不用升级驱动

安装依赖

  • 依赖地址(python调用npu的依赖):https://github.com/airockchip/rknn-toolkit2/blob/master/rknn-toolkit-lite2/packages/rknn_toolkit_lite2-2.2.0-cp310-cp310-linux_aarch64.whl
python install rknn_toolkit_lite2-2.2.0-cp310-cp310-linux_aarch64.whl
  • 在板端安装 RKNN-Toolkit-lite 后,使用对应 demo 的 python 推理脚本,将 from rknn.api import RKNN 修改为 from rknnlite.api import RKNNLite as RKNN 才可以实现板端的 python 推理

  • 将rknn模型复制到开发板上
  • 运行代码
python yolov8-img.py

注意点

如果在边缘设备上运行需要替换包的引入

from rknn.api import RKNN
替换为下面的写法
from  rknnlite.api import RKNNLite as RKNN

npu使用率查看

watch sudo cat /sys/kernel/debug/rknpu/load

查看系统

uname -a
cat /etc/os-release

http://www.kler.cn/a/394748.html

相关文章:

  • 秒鲨后端之MyBatis【2】默认的类型别名、MyBatis的增删改查、idea中设置文件的配置模板、MyBatis获取参数值的两种方式、特殊SQL的执行
  • js 数据类型以及typeof的关系
  • GraalVM完全指南:云原生时代下使用GraalVM将Spring Boot 3应用转换为高效Linux可执行文件
  • 汽车IVI中控开发入门及进阶(47):CarPlay开发
  • 小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
  • sh cmake-linux.sh -- --skip-license --prefix = $MY_INSTALL_DIR
  • spark的学习-06
  • k8s 1.28.2 集群部署 docker registry 接入 MinIO 存储
  • leveldb存储token的简单实现
  • 数据结构-布隆过滤器和可逆布隆过滤器
  • vue中 通过cropperjs 实现图片裁剪
  • 开源项目低代码表单设计器FcDesigner扩展右侧组件的配置规则
  • Spring Cloud Gateway(分发请求)
  • 边缘提取函数 [OPENCV--2]
  • 数据结构的时间复杂度和空间复杂度
  • 推荐一款CFD/CAE可视化分析软件:Tecplot 360 EX
  • Unity 中使用 C# 对 Vector2 向量朝向进行顺时针排序及复杂排序场景处理
  • Leetcode 存在重复元素II
  • 深入探索:Scrapy深度爬取策略与实践
  • Linux(文件特殊属性 + FACL 图片+大白话)
  • 机器学习基础04
  • Java项目实战II基于微信小程序的实习记录(开发文档+数据库+源码)
  • Unity3D 制作MMORPG 3D地图编辑器详解
  • FBX福币交易所恒指收跌1.96% 半导体股继续回调
  • SpringBoot整合Freemarker(四)
  • ‘nodemon‘ 不是内部或外部命令,也不是可运行的程序