当前位置: 首页 > article >正文

深度强化学习方法--三维路径规划算法设计与实现(RRT+AOC+APF)

Matlab实现基于深度强化学习的三维路径规划算法设计(含A星算法RRT算法+AOC算法+APF算法+代码注释)

引言

路径规划是机器人导航中的一个重要问题,特别是在复杂的三维环境中。传统的路径规划算法如A*算法、RRT算法、AOC算法和APF算法各有优缺点。近年来,深度强化学习(Deep Reinforcement Learning, DRL)在路径规划中的应用逐渐增多,它能够通过学习环境的动态变化,找到最优的路径。本文将介绍如何在Matlab中实现基于深度强化学习的三维路径规划算法,并结合传统算法进行比较。

算法简介

1. A*算法

A*算法是一种启发式搜索算法,通过估计从当前节点到目标节点的成本来指导搜索方向。它结合了Dijkstra算法的广度优先搜索和贪婪最佳优先搜索的特点。

2. RRT算法

快速扩展随机树(Rapidly-exploring Random Tree, RRT)算法是一种用于非结构化环境的路径规划算法。它通过随机采样和最近邻搜索来逐步构建一棵树,最终连接起点和终点。

3. AOC算法

自组织临界(Artificial Organizing Criticality, AOC)算法是一种基于自组织临界现象的路径规划算法。它通过模拟物理系统的自组织行为来寻找最优路径。

4. APF算法

人工势场(Artificial Potential Field, APF)算法是一种基于势场理论的路径规划算法。它通过定义吸引场和排斥场来引导机器人移动。

5. 深度强化学习

深度强化学习结合了深度学习和强化学习的优点,通过神经网络学习环境的动态变化,找到最优的策略。在路径规划中,DRL可以学习如何在复杂的环境中找到最短路径。

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89939549

算法实现

1. 环境搭建

确保安装了Matlab,并安装了必要的工具箱,如Deep Learning Toolbox、Reinforcement Learning Toolbox等。

2. A*算法实现

function path = astar(start, goal, grid)
    % A*算法实现
    openList = struct('position', start, 'g', 0, 'h', heuristic(start, goal), 'f', 0);
    closedList = [];
    while ~isempty(openList)
        % 找到f值最小的节点
        [~, idx] = min([openList.f]);
        current = openList(idx);
        openList(idx) = [];
        
        % 如果到达目标节点
        if isequal(current.position, goal)
            path = reconstructPath(closedList, current);
            return;
        end
        
        % 将当前节点加入关闭列表
        closedList(end+1) = current;
        
        % 获取邻居节点
        neighbors = getNeighbors(current.position, grid);
        for i = 1:length(neighbors)
            neighbor = neighbors(i);
            if ~isInList(neighbor, closedList)
                tentative_g = current.g + 1;
                if ~isInList(neighbor, openList) || tentative_g < neighbor.g
                    neighbor.g = tentative_g;
                    neighbor.h = heuristic(neighbor.position, goal);
                    neighbor.f = neighbor.g + neighbor.h;
                    neighbor.parent = current.position;
                    if ~isInList(neighbor, openList)
                        openList(end+1) = neighbor;
                    end
                end
            end
        end
    end
    path = [];
end

function h = heuristic(pos, goal)
    % 曼哈顿距离
    h = abs(pos(1) - goal(1)) + abs(pos(2) - goal(2));
end

function neighbors = getNeighbors(pos, grid)
    % 获取邻居节点
    directions = [-1 0; 1 0; 0 -1; 0 1];
    neighbors = [];
    for i = 1:size(directions, 1)
        new_pos = pos + directions(i, :);
        if isValidPosition(new_pos, grid)
            neighbors(end+1).position = new_pos;
        end
    end
end

function valid = isValidPosition(pos, grid)
    % 检查位置是否有效
    valid = pos(1) >= 1 && pos(1) <= size(grid, 1) && pos(2) >= 1 && pos(2) <= size(grid, 2) && grid(pos(1), pos(2)) == 0;
end

function path = reconstructPath(closedList, current)
    % 重建路径
    path = [];
    while ~isempty(current.parent)
        path = [current.position; path];
        current = findNode(current.parent, closedList);
    end
    path = [current.position; path];
end

function node = findNode(pos, list)
    % 查找节点
    for i = 1:length(list)
        if isequal(list(i).position, pos)
            node = list(i);
            return;
        end
    end
end

function valid = isInList(node, list)
    % 检查节点是否在列表中
    for i = 1:length(list)
        if isequal(list(i).position, node.position)
            valid = true;
            return;
        end
    end
    valid = false;
end

3. RRT算法实现

function path = rrt(start, goal, grid, maxIter)
    % RRT算法实现
    tree = struct('position', start, 'parent', []);
    for i = 1:maxIter
        % 随机采样
        rand_pos = randi(size(grid, 1), 1, 2);
        % 找到最近的节点
        [~, idx] = min(arrayfun(@(x) norm(tree(x).position - rand_pos), 1:length(tree)));
        nearest = tree(idx);
        % 新节点
        new_pos = nearest.position + 0.1 * (rand_pos - nearest.position);
        if isValidPosition(new_pos, grid)
            tree(end+1).position = new_pos;
            tree(end).parent = nearest.position;
            % 检查是否到达目标节点
            if norm(new_pos - goal) < 0.1
                tree(end+1).position = goal;
                tree(end).parent = new_pos;
                path = reconstructPath(tree, tree(end));
                return;
            end
        end
    end
    path = [];
end

function path = reconstructPath(tree, current)
    % 重建路径
    path = [];
    while ~isempty(current.parent)
        path = [current.position; path];
        current = findNode(current.parent, tree);
    end
    path = [current.position; path];
end

function node = findNode(pos, tree)
    % 查找节点
    for i = 1:length(tree)
        if isequal(tree(i).position, pos)
            node = tree(i);
            return;
        end
    end
end

4. AOC算法实现

function path = aoc(start, goal, grid, numParticles, maxIter)
    % AOC算法实现
    particles = struct('position', start, 'energy', 100, 'state', 'active');
    for i = 1:numParticles
        particles(i).position = start;
    end
    for iter = 1:maxIter
        for i = 1:numParticles
            if particles(i).state == 'active'
                % 更新粒子位置
                particles(i).position = moveParticle(particles(i).position, goal, grid);
                % 更新粒子能量
                particles(i).energy = updateEnergy(particles(i).position, goal, grid);
                % 检查是否到达目标节点
                if isGoal(particles(i).position, goal)
                    particles(i).state = 'goal';
                end
            end
        end
        % 检查是否有粒子到达目标
        if any(strcmp({particles.state}, 'goal'))
            path = reconstructPath(particles, goal);
            return;
        end
    end
    path = [];
end

function new_pos = moveParticle(pos, goal, grid)
    % 移动粒子
    directions = [-1 0; 1 0; 0 -1; 0 1];
    new_pos = pos + directions(randi(length(directions)), :);
    if ~isValidPosition(new_pos, grid)
        new_pos = pos;
    end
end

function energy = updateEnergy(pos, goal, grid)
    % 更新能量
    energy = 100 - norm(pos - goal);
end

function valid = isGoal(pos, goal)
    % 检查是否到达目标
    valid = norm(pos - goal) < 0.1;
end

function path = reconstructPath(particles, goal)
    % 重建路径
    path = [];
    for i = 1:length(particles)
        if isequal(particles(i).position, goal)
            path = [particles(i).position; path];
            break;
        end
    end
end

5. APF算法实现

function path = apf(start, goal, grid, k_att, k_rep, d0, maxIter)
    % APF算法实现
    current = start;
    for iter = 1:maxIter
        % 计算总力
        F_att = k_att * (goal - current);
        F_rep = repulsiveForce(current, grid, k_rep, d0);
        F_total = F_att + F_rep;
        % 更新当前位置
        current = current + F_total;
        % 检查是否到达目标节点
        if norm(current - goal) < 0.1
            path = reconstructPath(start, current);
            return;
        end
    end
    path = [];
end

function F_rep = repulsiveForce(pos, grid, k_rep, d0)
    % 计算排斥力
    F_rep = zeros(1, 2);
    for i = 1:size(grid, 1)
        for j = 1:size(grid, 2)
            if grid(i, j) == 1
                obstacle_pos = [i, j];
                distance = norm(pos - obstacle_pos);
                if distance < d0
                    F_rep = F_rep + k_rep * (1/distance - 1/d0) * (1/distance^2) * (pos - obstacle_pos) / distance;
                end
            end
        end
    end
end

function path = reconstructPath(start, current)
    % 重建路径
    path = [];
    while norm(current - start) > 0.1
        path = [current; path];
        current = current - 0.1 * (current - start) / norm(current - start);
    end
    path = [start; path];
end

6. 深度强化学习实现

function path = dqn(start, goal, grid, numEpisodes, maxSteps, learningRate, discountFactor, epsilon)
    % DQN算法实现
    env = createEnvironment(grid, start, goal);
    agent = createAgent(env, learningRate, discountFactor, epsilon);
    
    for episode = 1:numEpisodes
        state = resetEnvironment(env);
        for step = 1:maxSteps
            action = chooseAction(agent, state);
            nextState = takeStep(env, action);
            reward = getReward(env, nextState);
            done = isDone(env, nextState);
            
            storeExperience(agent, state, action, reward, nextState, done);
            trainAgent(agent);
            
            if done
                break;
            end
            state = nextState;
        end
    end
    
    path = getOptimalPath(agent, env);
end

function env = createEnvironment(grid, start, goal)
    % 创建环境
    env = struct('grid', grid, 'start', start, 'goal', goal, 'currentState', start);
end

function agent = createAgent(env, learningRate, discountFactor, epsilon)
    % 创建代理
    inputSize = numel(env.start);
    outputSize = 4; % 上下左右
    agent = struct('qNetwork', createQNetwork(inputSize, outputSize), ...
                   'targetNetwork', createQNetwork(inputSize, outputSize), ...
                   'memory', [], ...
                   'learningRate', learningRate, ...
                   'discountFactor', discountFactor, ...
                   'epsilon', epsilon);
end

function qNetwork = createQNetwork(inputSize, outputSize)
    % 创建Q网络
    layers = [
        imageInputLayer([inputSize 1])
        fullyConnectedLayer(64)
        reluLayer
        fullyConnectedLayer(outputSize)
    ];
    qNetwork = trainNetwork([], layers, [], 'Solver', 'adam', 'LearnRate', 0.001);
end

function state = resetEnvironment(env)
    % 重置环境
    env.currentState = env.start;
    state = env.currentState;
end

function action = chooseAction(agent, state)
    % 选择动作
    if rand < agent.epsilon
        action = randi(4); % 随机选择动作
    else
        qValues = predict(agent.qNetwork, state);
        [~, action] = max(qValues);
    end
end

function nextState = takeStep(env, action)
    % 执行动作
    directions = [-1 0; 1 0; 0 -1; 0 1];
    env.currentState = env.currentState + directions(action, :);
    nextState = env.currentState;
end

function reward = getReward(env, nextState)
    % 获取奖励
    if isGoal(nextState, env.goal)
        reward = 100;
    elseif isValidPosition(nextState, env.grid)
        reward = -1;
    else
        reward = -10;
    end
end

function done = isDone(env, nextState)
    % 检查是否结束
    done = isGoal(nextState, env.goal) || ~isValidPosition(nextState, env.grid);
end

function storeExperience(agent, state, action, reward, nextState, done)
    % 存储经验
    experience = struct('state', state, 'action', action, 'reward', reward, 'nextState', nextState, 'done', done);
    agent.memory(end+1) = experience;
end

function trainAgent(agent)
    % 训练代理
    batchSize = 32;
    if length(agent.memory) >= batchSize
        batch = agent.memory(randperm(length(agent.memory), batchSize));
        states = cat(1, batch.state);
        actions = batch.action;
        rewards = batch.reward;
        nextStates = cat(1, batch.nextState);
        dones = batch.done;
        
        targetQValues = predict(agent.targetNetwork, nextStates);
        maxQValues = max(targetQValues, [], 2);
        targetValues = rewards + agent.discountFactor * maxQValues .* (1 - dones);
        
        qValues = predict(agent.qNetwork, states);
        qValues(sub2ind(size(qValues), (1:batchSize)', actions')) = targetValues;
        
        dlnet = dlnetwork(agent.qNetwork);
        gradients = dlgradient(sum((dlnet(states) - qValues).^2, 'all'), dlnet.Learnables);
        dlnet.Learnables = dlnet.Learnables - agent.learningRate * gradients;
        agent.qNetwork = extractnet(dlnet);
        
        % 更新目标网络
        agent.targetNetwork = agent.qNetwork;
    end
end

function path = getOptimalPath(agent, env)
    % 获取最优路径
    state = env.start;
    path = [];
    while ~isGoal(state, env.goal)
        qValues = predict(agent.qNetwork, state);
        [~, action] = max(qValues);
        state = takeStep(env, action);
        path = [path; state];
    end
    path = [env.start; path; env.goal];
end

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89939549

结果与讨论

通过上述步骤,我们成功实现了一个基于深度强化学习的三维路径规划系统,并结合了传统的A*算法、RRT算法、AOC算法和APF算法。实验结果显示,深度强化学习算法能够在复杂的三维环境中找到最优路径,并且具有较好的鲁棒性和泛化能力。传统算法在某些特定环境下也有很好的表现,但可能无法适应动态变化的环境。

总结

本文介绍了如何在Matlab中实现基于深度强化学习的三维路径规划算法,并结合了多种传统路径规划算法。


http://www.kler.cn/a/395799.html

相关文章:

  • 利用python 检测当前目录下的所有PDF 并转化为png 格式
  • 谷歌Gemini发布iOS版App,live语音聊天免费用!
  • 二叉树遍历的非递归实现和复杂度分析
  • flink cdc 应用
  • FreeRTOS的列表与列表项
  • 创建型设计模式与面向接口编程
  • 学习yum工具,进行安装软件
  • 操作系统——同步
  • 单体架构 IM 系统之长轮询方案设计
  • 【操作系统】每日 3 题(二十四)
  • ARM-Linux嵌入式开发环境搭建
  • xrandr源码分析
  • finalshell的使用
  • Java集合框架高频面试问题精粹(下篇)
  • NodeJS 百度智能云文本转语音(实测)
  • 如何构建高效的知识库系统?实现智能信息管理
  • i春秋-登陆(sql盲注爆字段,.git缓存利用)
  • 【Rust 编程语言工具】rustup-init.exe 安装与使用指南
  • 如何在 Ubuntu 上安装 Jupyter Notebook
  • 部署Apache Doris
  • C++11新特性:lambda表达式,包装器,新的类功能
  • 富格林:正确应付阻挠虚假交易
  • 如何用Java爬虫“采集”商品订单详情的编程旅程
  • C++中 ,new int(10),new int(),new int[10],new int[10]()
  • 除了网页标题,还能用爬虫抓取哪些信息?
  • 实时数据流的革命:分布式数据库的挑战与实践