当前位置: 首页 > article >正文

深度学习:transpose_qkv()与transpose_output()

transpose_qkv 函数的主要作用是将输入的张量重新排列,使其适合多头注意力的计算。具体来说,它将输入张量的形状从 (batch_size, seq_len, num_hiddens) 转换为 (batch_size * num_heads, seq_len, num_hiddens // num_heads)

详细步骤

  • 输入形状
    假设输入的张量形状为 (batch_size, seq_len, num_hiddens),其中:
    batch_size 是批次大小。
    seq_len 是序列长度。
    num_hiddens 是隐藏层的维度。

  • 拆分多头
    多头注意力机制将 num_hiddens 维度拆分成 num_heads 个头,每个头的维度为 num_hiddens // num_heads。

  • 重新排列
    通过重新排列张量的维度,将 (batch_size, seq_len, num_hiddens) 转换为 (batch_size * num_heads, seq_len, num_hiddens // num_heads)。

具体实现

假设 transpose_qkv 函数的实现如下:

def transpose_qkv(X, num_heads):
    # X: (batch_size, seq_len, num_hiddens)
    batch_size, seq_len, num_hiddens = X.shape
    num_hiddens_per_head = num_hiddens // num_heads
    
    # 将 num_hiddens 维度拆分成 num_heads 个头
    X = X.reshape(batch_size, seq_len, num_heads, num_hiddens_per_head)
    
    # 交换维度,使得每个头的数据连续排列
    X = X.permute(0, 2, 1, 3)  # (batch_size, num_heads, seq_len, num_hiddens_per_head)
    
    # 将 batch_size 和 num_heads 合并
    X = X.reshape(batch_size * num_heads, seq_len, num_hiddens_per_head)
    
    return X
  • 解释
    1. 拆分维度:
      X.reshape(batch_size, seq_len, num_heads, num_hiddens_per_head):
      将 num_hiddens 维度拆分成 num_heads 个头,每个头的维度为 num_hiddens_per_head。
      此时,X 的形状为 (batch_size, seq_len, num_heads, num_hiddens_per_head)。
    2. 交换维度:
      X.permute(0, 2, 1, 3):
      将 num_heads 维度移到第二个位置,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, num_heads, seq_len, num_hiddens_per_head)。
    3. 合并维度:
      X.reshape(batch_size * num_heads, seq_len, num_hiddens_per_head):
      将 batch_size 和 num_heads 合并,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size * num_heads, seq_len, num_hiddens_per_head)。

总结

transpose_qkv 函数通过以下步骤将输入张量重新排列,使其适合多头注意力的计算:

  • 将 num_hiddens 维度拆分成 num_heads 个头。

  • 交换维度,使得每个头的数据连续排列。

  • 合并 batch_size 和 num_heads 维度,使得每个头的数据连续排列。

最终,transpose_qkv 函数返回形状为 (batch_size * num_heads, seq_len, num_hiddens // num_heads) 的张量,以便进行多头注意力计算。

transpose_output 函数的主要作用是将多头注意力的输出重新排列,使其适合后续的处理。具体来说,它将输入张量的形状从 (batch_size * num_heads, seq_len, num_hiddens // num_heads) 转换为 (batch_size, seq_len, num_hiddens)

具体实现

假设 transpose_output 函数的实现如下:

def transpose_output(X, num_heads):
    # X: (batch_size * num_heads, seq_len, num_hiddens_per_head)
    batch_size_times_num_heads, seq_len, num_hiddens_per_head = X.shape
    batch_size = batch_size_times_num_heads // num_heads
    
    # 将 batch_size 和 num_heads 拆分
    X = X.reshape(batch_size, num_heads, seq_len, num_hiddens_per_head)
    
    # 交换维度,使得每个头的数据连续排列
    X = X.permute(0, 2, 1, 3)  # (batch_size, seq_len, num_heads, num_hiddens_per_head)
    
    # 将 num_heads 和 num_hiddens_per_head 合并
    X = X.reshape(batch_size, seq_len, num_heads * num_hiddens_per_head)
    
    return X
  • 解释
    1. 拆分维度:
      X.reshape(batch_size, num_heads, seq_len, num_hiddens_per_head):
      将 batch_size * num_heads 维度拆分成 batch_size 和 num_heads。
      此时,X 的形状为 (batch_size, num_heads, seq_len, num_hiddens_per_head)。
    2. 交换维度:
      X.permute(0, 2, 1, 3):
      将 seq_len 维度移到第二个位置,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, seq_len, num_heads, num_hiddens_per_head)。
    3. 合并维度:
      X.reshape(batch_size, seq_len, num_heads * num_hiddens_per_head):
      将 num_heads 和 num_hiddens_per_head 合并,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, seq_len, num_hiddens)。

总结

transpose_output 函数通过以下步骤将多头注意力的输出重新排列,使其适合后续的处理:

  • 将 batch_size * num_heads 维度拆分成 batch_size 和 num_heads。

  • 交换维度,使得每个头的数据连续排列。

  • 合并 num_heads 和 num_hiddens_per_head 维度,使得每个头的数据连续排列。

最终,transpose_output 函数返回形状为 (batch_size, seq_len, num_hiddens) 的张量,以便进行后续的处理。


http://www.kler.cn/a/395960.html

相关文章:

  • CondaError: Run ‘conda init‘ before ‘conda activate‘解决办法
  • CSS基础知识04
  • 时钟之CSS+JS版
  • Uniapp踩坑input自动获取焦点ref动态获取实例不可用
  • 微服务中的技术使用与搭配:如何选择合适的工具构建高效的微服务架构
  • DNS批量解析管理软件有什么用
  • taro框架h5项目打包后页面空白 解决办法
  • 【系统、用户提示词区别】
  • AI大模型(二):AI编程实践
  • 深度学习:广播机制
  • 差分数组-实现区间强度算法
  • Keil基于ARM Compiler 5的工程迁移为ARM Compiler 6的工程
  • 24.11.15 Vue3
  • Python进程间通讯大揭秘:原理深度剖析与实战案例分享
  • 数据网格能替代数据仓库吗?
  • 差分数组解析
  • golang中rpc
  • jmeter常用配置元件介绍总结之断言
  • 无人机图传系统介绍——CKESC电调小课堂11.0
  • 全面评估ASPICE标准对汽车软件开发的影响与效果
  • Android Studio | 修改镜像地址为阿里云镜像地址,启动App
  • 【云原生系列--Longhorn的部署】
  • 11.11 机器学习-数据集的获取和划分
  • 深度学习--卷积神经网络
  • 2024年11月系统架构设计师考试真题回顾
  • 性能测试|JMeter接口与性能测试项目