当前位置: 首页 > article >正文

Python学习从0到1 day26 第三阶段 Spark ④ 数据输出

半山腰太挤了,你该去山顶看看

                                        —— 24.11.10

一、输出为python对象

1.collect算子

功能:

将RDD各个分区内的数据,统一收集到Driver中,形成一个List对象

语法:

rdd.collect()

返回值是一个list列表

示例:

from pyspark import SparkConf,SparkContext
import os

conf = SparkConf().setMaster("local").setAppName("test_spark")
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
sc = SparkContext(conf = conf)

Set = {"小明","小红","小强"}
Tuple = ("小明","小红","小强")

set_rdd = sc.parallelize(Set)
tuple_rdd = sc.parallelize(Tuple)

print(set_rdd.collect())
print(tuple_rdd.collect())


2.reduce算子

功能:

对RDD数据集按照你传入的逻辑进行聚合

语法:

rdd.reduce(func)

rdd = sc.parallelize(range(1 , 10))
# 将rdd的数据进行累加求和
print(rdd.reduce(lambda a , b : a + b))

返回值等同于计算函数的返回值

示例:

from pyspark import SparkContext,SparkConf
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"

conf = SparkConf().setMaster("local").setAppName("test_spark")
sc = SparkContext(conf = conf)

List = [1,2,3,4,5,6,7,8,9]
rdd = sc.parallelize(List)
print(rdd.reduce(lambda x, y : x + y))


3.take算子

功能:

取RDD的前N个元素,组合成list返回

语法:

sc.parallelize([3,2,1,4,5,6]).take(5)    # [3,2,1,4,5]

 返回前n个元素组成的list

示例:

from pyspark import SparkContext,SparkConf
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)
List = (1,2,3,4,5,6,7,8,9)
rdd = sc.parallelize(List)
res = rdd.take(4)
print("前四个元素为:"+res)


4.count算子

功能:

计算RDD有多少条数据

语法:

sc.parallelize([3,2,1,4,5,6]).count()

返回值是一个数字

示例:

from pyspark import SparkConf,SparkContext
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)

rdd = sc.parallelize(["yyh","hl","grq","zxj","cby","wfe","mrr","qjy"])
print(rdd.count())


二、输出到文件中

1.saveAsTextFile算子

功能:

RDD的数据写入文本文件

支持本地写出、 hdfs等文件系统

语法:

rdd = sc.parallelize([1,2,3,4,5])
rdd.saveAsTextFile("../data/output/test.txt")

2.配置Hadoop相关依赖

调用保存文件的算子,需要配置Hadoop依赖

① 下载Hadoop安装包

http://archive.apache.org/dist/hadoop/common/hadoop-3.0.0/hadoop-3.0.0.tar.gz

② 解压到电脑任意位置

③ 在Python代码中使用os模块配置:

os.environ['HADOOP HOME']='HADOOP解压文件夹路径'
E:\python.learning\hadoop分布式相关\hadoop-3.0.0

④ 下载winutils.exe,并放入Hadoop解压文件夹的bin目录内

https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/winutils.exe

⑤ 下载hadoop.dll,并放入:C:/Windows/System32 文件夹内

https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/hadoop.dll


3.代码示例

from pyspark import SparkConf,SparkContext
import os

conf = SparkConf().setMaster("local").setAppName("test_spark")
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
sc = SparkContext(conf = conf)

# 准备RDD1
rdd1 = sc.parallelize([1,2,3,4,5])

# 准备RDD2
rdd2 = sc.parallelize([("Hello, 3"),("Spark", 5),("Hi", 7)])

# 准备RDD3
rdd3 = sc.parallelize([[1, 3, 5],[6, 7, 9],[11, 13, 11]])

# 输出到文件中
rdd1.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output1/rdd1")
rdd2.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output2/rdd2")
rdd3.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output3/rdd3")

注:如果输出路径的文件存在,代码将会报错


4.运行结果

创建几个文件取决于Hadoop上的分区数量

解决方式:修改rdd的分区


5.修改rdd分区为1个

方式1

Sparkconf对象设置属性全局并行度为1:

from pyspark import SparkConf, SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
os.environ['HADOOP_HOME'] = "E:\python.learning\hadoop分布式相关\hadoop-3.0.0"
conf = SparkConf().setMaster("local").setAppName("test_spark")
conf.set("spark.default.parallelize", "1")
sc = SparkContext(conf = conf)

# 准备RDD1
rdd1 = sc.parallelize([1,2,3,4,5])

# 准备RDD2
rdd2 = sc.parallelize([("Hello, 3"),("Spark", 5),("Hi", 7)])

# 准备RDD3
rdd3 = sc.parallelize([[1, 3, 5],[6, 7, 9],[11, 13, 11]])

# 输出到文件中
rdd1.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output1/rdd1")
rdd2.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output2/rdd2")
rdd3.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output3/rdd3")

方式2

创建RDD的时候设置 parallelize方法传入numSlices参数为1:

rdd1 = sc.parallelize([1,2,3,4,5],1)


http://www.kler.cn/a/396118.html

相关文章:

  • 初识Linux · 共享内存
  • 七:如何用Chrome的Network面板分析HTTP报文
  • React Native 全栈开发实战班 - 核心组件与导航
  • 3588 yolov8 onnx 量化转 rknn 并运行
  • IOT物联网低代码可视化大屏解决方案汇总
  • 数据结构Python版
  • 发布rust crate
  • SpringCloud篇(服务提供者/消费者)(持续更新迭代)
  • 时序数据基础TDEngine
  • Flume的安装与使用
  • 249: 凸包面积
  • Spark RDD 的 compute 方法
  • Apache Doris:高级数据导入导出与外部系统集成
  • PyTorch和TensorFlow和Keras
  • Rust Struct 属性初始化
  • SpringBoot(5)-SpringSecurity
  • 循环队列KFIFO
  • 【Linux篇】面试——用户和组、文件类型、权限、进程
  • shell脚本(1)
  • 4. Spring Cloud Ribbon 实现“负载均衡”的详细配置说明
  • TMMI(测试成熟度模型集成)认证是什么?
  • uniapp微信登录的流程
  • 同三维T610UDP-4K60 4K60 DP或HDMI或手机信号采集卡
  • paddle表格识别数据制作
  • 【3D Slicer】的小白入门使用指南八
  • Redis五大基本类型——String字符串命令详解(命令用法详解+思维导图详解)