当前位置: 首页 > article >正文

变分自编码器(VAE, Variational Autoencoder)

代码说明

VAE 模型结构:
编码器将输入数据(如 MNIST 图像)映射到潜在空间,生成均值 (mu) 和对数方差 (logvar)。
通过重新参数化技巧 (reparameterize) 从正态分布中采样潜在向量 z。
解码器将潜在向量 z 映射回原始空间,生成重构数据。
损失函数:
重构误差(BCE):衡量重构数据和原始数据的差异。
KL 散度(KLD):衡量潜在向量分布与标准正态分布的接近程度。
数据加载:
MNIST 数据集被用作示例,图像被标准化为 [0, 1] 范围。
生成结果:
测试阶段通过潜在空间随机采样生成新样本,并用 Matplotlib 可视化。
在这里插入图片描述

代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

# 超参数
input_dim = 784  # 输入维度 (28x28 图像展开为向量)
hidden_dim = 400  # 隐藏层维度
latent_dim = 20   # 潜在空间维度
batch_size = 128  # 批量大小
num_epochs = 20   # 训练轮数
learning_rate = 1e-3  # 学习率

# 数据加载
# transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
transform = transforms.Compose([
    transforms.ToTensor()  # 将像素值直接归一化到 [0, 1]
])

train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# VAE 模型定义
class VAE(nn.Module):
    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(VAE, self).__init__()
        # 编码器
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc_mu = nn.Linear(hidden_dim, latent_dim)
        self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
        # 解码器
        self.fc2 = nn.Linear(latent_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, input_dim)

    def encode(self, x):
        h1 = torch.relu(self.fc1(x))
        mu = self.fc_mu(h1)
        logvar = self.fc_logvar(h1)
        return mu, logvar

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def decode(self, z):
        h2 = torch.relu(self.fc2(z))
        return torch.sigmoid(self.fc3(h2))

    def forward(self, x):
        mu, logvar = self.encode(x)
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar

# 构造模型、损失函数和优化器
model = VAE(input_dim, hidden_dim, latent_dim)
criterion = nn.BCELoss(reduction='sum')  # 二元交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练
def loss_function(recon_x, x, mu, logvar):
    BCE = criterion(recon_x, x)
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

model.train()
for epoch in range(num_epochs):
    train_loss = 0
    for data, _ in train_loader:
        data = data.view(-1, input_dim)  # 展平输入图像
        recon_batch, mu, logvar = model(data)
        loss = loss_function(recon_batch, data, mu, logvar)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()

    print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {train_loss / len(train_loader.dataset):.4f}")

# 测试(生成样本)
model.eval()
with torch.no_grad():
    z = torch.randn(16, latent_dim)  # 随机采样潜在向量
    samples = model.decode(z).view(-1, 1, 28, 28)  # 生成样本

# 可视化生成结果
plt.figure(figsize=(8, 8))
for i in range(16):
    plt.subplot(4, 4, i + 1)
    plt.imshow(samples[i][0].numpy(), cmap='gray')
    plt.axis('off')
plt.suptitle('Generated Samples from VAE')
plt.show()


http://www.kler.cn/a/397259.html

相关文章:

  • 【linux学习指南】VSCode部署Ubantu云服务器,与Xshell进行本地通信文件编写
  • 108. UE5 GAS RPG 实现地图名称更新和加载关卡
  • Spark RDD sortBy算子什么情况会触发shuffle
  • 掌握C#中的异步编程:async和await关键字详解
  • 基于汇编语言的贪吃蛇程序
  • 基于 PyTorch 从零手搓一个GPT Transformer 对话大模型
  • 【PYTORCH】使用MTCNN和InceptionResnetV1简单进行人脸检测和相似度匹配
  • docker:docker: Get https://registry-1.docker.io/v2/: net/http: request canceled
  • 中心扩展算法
  • 使用 Grafana api 查询 Datasource 数据
  • 小程序如何完成订阅
  • 每天五分钟机器学习:支持向量机算法数学基础之核函数
  • Centos 9 安装 PostgreSQL 16 并支持远程访问
  • 编程初学者的第一个 Rust 系统
  • java模拟键盘实现selenium上下左右键 table中的左右滚动条实现滚动
  • NVR录像机汇聚管理EasyNVR多品牌NVR管理工具视频汇聚技术在智慧安防监控中的应用与优势
  • Docker 命令大全
  • 力扣 LeetCode 541. 反转字符串II(Day4:字符串)
  • Vue3 模板语法
  • C#调用方法时获取方法名、类名、命名空间
  • Spring-boot 后端java配置接口返回jsp页面
  • leetcode100:相同的树
  • 前端面试笔试(三)
  • MySQL:表设计
  • Ubuntu24.04上安装和配置MariaDB
  • 内容营销专家刘鑫炜:AI搜索会让内容营销变得更容易吗?