当前位置: 首页 > article >正文

简化编码流程提升开发效率:本地部署Code Llama与远程使用实战指南

文章目录

    • 前言
    • 1. 本地部署Text generation Web UI
    • 2. 安装CodeLlama大模型
    • 3. 实现公网远程使用Code Llama
    • 4. 固定Text generation Web UI公网地址

前言

本篇文章介绍如何在本地部署Text generation Web UI并搭建Code Llama大模型运行,并且搭建Code Llama大语言模型,结合Cpolar内网穿透实现公网可远程使用Code Llama。

Code Llama是一个可以使用文本提示生成代码的大型语言模型 (LLM)。可以使当前开发人员的工作流程更快、更高效,并降低学习编码人员的进入门槛。 Code Llama 有潜力用作生产力和教育工具,帮助程序员编写更强大、文档更齐全。

Text generation Web UI部署非常简便,不仅在github主页上直接提供了一键部署安装包,同时由于是web UI形式,直接通过浏览器即可操作,不过本地化部署,无法远程访问,这里我们结合cpolar工具实现从安装到最后实现远程访问。

那么接下来先在本地部署一个Text generation Web UI界面。

请添加图片描述

1. 本地部署Text generation Web UI

本篇文章测试环境:Windows10专业版

首先我们需要在本地部署Text generation Web UI,是一个基于Gradio的LLM Web UI开源项目,可以利用其快速搭建部署各种大模型环境。

github地址:https://github.com/facebookresearch/codellama

点击download,一键下载文件到本地

15c36f878d9fc541d8f2a74c822f71f.png

解压文件夹,然后打开文件,双击运行start_windows进行自动下载

image.png

4b1ebf5eadc046af0fcc3dda1d1e91c.png

1c7fa499d29d94af7e202184634ff69.png

安装过程中会有一次确认,根据自己的显卡和系统选择就可以了,这里我选择A(英伟达显卡)

f6ebdd0b4fc4750aab5f5ff01a99cee.png

安装完成后,可以看到本地地址是:http://127.0.0.1:7680,Ctrl+c终止它。

2. 安装CodeLlama大模型

接下来要下载CodeLlama模型,在Hugging face上直接下载转换好的模型

Hugging face格式模型 https://huggingface.co/codellama

选择Base Model

1d9884ebc63ab334ea567f987d44c03.png

然后依次下载下方红框中的文件

在这里插入图片描述

c0d493d7f8c4bdd4aaa1dc69cbe0f64.png

下载好后,然后选中这九个文件剪切,回到 text-generation-webui 目录中,进入 models 目录中,新建要给文件夹,名为 codellama-7b

5ef8e07ef3e8cd67d684fb9c4f06235.png

把刚才9个文件,都粘贴到这个新文件夹中

500b90b3827a9eb26e22699dae6fc89.png

然后回到text-generation-webui 目录中,双击打开 start_windows

72810330989c686b50035e8147f55fc.png

然后打开一个浏览器,输入localhost:7680,可以看到进入到了Text generation Web UI中

514e0b39a94c435f3d6da819829fa72.png

点击上方model切换到模型配置页面,在模型下拉列表这里选择 codellama-7b

3e39c2884398d5b3645093be2b16263.png

然后点击Load加载模型,接下来可以测试提出问题

在这里插入图片描述

然后把右侧上方的代码使用vscode测试一下,是否能得出结果

28fd64bca6241db98a220c4e1377532.png

可以看到,显示出了正确结果,目前我们在本机部署了 Text generation Web UI,并且还添加了code llama大模型,如果想团队协作多人使用,或者在异地其他设备使用的话就需要结合Cpolar内网穿透实现公网访问,免去了复杂得本地部署过程,只需要一个公网地址直接就可以进入到Text generation Web UI中。

接下来教大家如何安装Cpolar并且将 Text generation Web UI实现公网访问。

3. 实现公网远程使用Code Llama

下面是安装cpolar步骤:

Cpolar官网地址: https://www.cpolar.com

点击进入cpolar官网,点击免费使用注册一个账号,并下载最新版本的Cpolar

在这里插入图片描述

登录成功后,点击下载Cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

Cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到Cpolar web 配置界面,结下来在web 管理界面配置即可。

在这里插入图片描述

接下来配置一下 text-generation-webui 的公网地址,

登录后,点击左侧仪表盘的隧道管理——创建隧道,

首先创建一个 LobeChat 的公网http地址隧道

  • 隧道名称:可自定义命名,注意不要与已有的隧道名称重复

  • 协议:选择http

  • 本地地址:7860 (本地访问的地址)

  • 域名类型:免费随机域名

  • 地区:选择China Top

点击创建

a4f507a45aa700bb7cae83d74387d54.png

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网地址,有两种访问方式,一种是http 和https

baedada5cedd7ddcf35b51a222fe656.png

我们接下来使用http公网地址访问,可以看到我们访问到了 Text generation Web UI 界面,这样一个公网地址访问就创建好了。

在这里插入图片描述

小结

如果我们需要长期进行团队协作的话,由于刚才创建的是随机的地址,24小时会发生变化。另外它的网址是由随机字符生成,不容易记忆。如果想把域名变成固定的二级子域名,并且不想每次都重新创建隧道来访问Text generation Web UI,我们可以选择创建一个固定的http地址来解决这个问题。

4. 固定Text generation Web UI公网地址

由于以上使用cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,地区选择china vip top,然后设置一个二级子域名名称,填写备注信息,点击保留。

32cb74ca916c4cef376991e7af47215.png

保留成功后复制保留的二级子域名地址:

c777135bed1169843e25cb2415a432f.png
登录cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

798347f47f02fee855343434d72148c.png

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名

  • Sub Domain:填写保留成功的二级子域名

  • 地区: China VIP

点击更新

在这里插入图片描述

更新完成后,打开在线隧道列表,此时可以看到随机的公网地址已经发生变化,地址名称也变成了保留和固定的二级子域名名称。

f6cbf1d131005884e6efe3bd4f03cad.png

最后,我们使用固定的公网地址访问Text generation Web UI界面可以看到访问成功,一个永久不会变化的远程访问方式即设置好了。

9637c19466bbfa0379b2d71d6accadb.png

接下来就可以随时随地进行异地公网来使用Code Llama大模型了,把固定的公网地址分享给身边的人,方便团队协作,同时也大大提高了工作效率!自己用的话,无需云服务器,还可以实现异地其他设备登录!以上就是如何在本地安装Code Llama以及在本地部署 Text generation Web UI 可视化界面的全部过程。


http://www.kler.cn/a/398243.html

相关文章:

  • 串口DMA接收不定长数据
  • Kafka新节点加入集群操作指南
  • 30-集群Backup Restore
  • MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并
  • 【AI图像生成网站Golang】雪花算法
  • 电脑长期不用,开不了机怎样解决
  • 【jvm】为什么要用元空间替代永久代
  • LabVIEW前面板最大化显示与像素偏差分析 有源程序附件
  • Linux常用命令,持续更新钟
  • AIGC ---探索AI生成内容的未来市场
  • react 中 useRef Hook 作用
  • 机器学习—学习曲线
  • Vanna使用ollama分析本地MySQL数据库 加入redis保存训练记录
  • torch.stack 张量维度的变化
  • 记录大学Linux运维上机考试题目和流程
  • 使用Python实现对接Hadoop集群(通过Hive)并提供API接口
  • STM32F103移植FreeRTOS
  • Scala-字符串(拼接、printf格式化输出等)-用法详解
  • Spring Boot编程训练系统:开发与部署
  • SpringBoot 创建对象常见的几种方式
  • UEFI学习(五)——启动框架
  • web-02
  • DB-GPT系列(六):数据Agent开发part1-光速创建AWEL Agent应用
  • Java 全栈知识体系
  • Oracle Instant Client 23.5安装配置完整教程
  • django框架-settings.py文件的配置说明