卷积神经网络(CNN)对 CIFAR-10 数据集进行图像分类
代码功能
数据预处理:使用 transforms 对图像进行归一化和转换。
模型定义:SimpleCNN 包含两层卷积层和两层全连接层,使用 ReLU 激活函数和最大池化层。
优化器和损失函数:使用 Adam 优化器和交叉熵损失函数。
训练循环:模型经过若干个 epoch 的训练,每次更新权重。
测试评估:在测试集上评估模型的准确性。
代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 超参数
batch_size = 64
learning_rate = 0.001
num_epochs = 10
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 将像素值归一化到 [-1, 1]
])
# CIFAR-10 数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 定义CNN模型
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 8 * 8, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1) # 展平
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 模型初始化
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{batch_idx}/{len(train_loader)}], Loss: {loss.item():.4f}")
# 测试模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print(f"Accuracy of the model on the test set: {100 * correct / total:.2f}%")