当前位置: 首页 > article >正文

【论文复现】基于扩散模型的无载体图像隐写术

在这里插入图片描述

📝个人主页🌹:Eternity._
🌹🌹期待您的关注 🌹🌹

在这里插入图片描述
在这里插入图片描述

❀ 无载体图像隐写术

  • 概述
  • 一、论文思路
  • 二、方法原理
  • 三、实验过程
  • 使用方式
  • 部署方式

概述


当前的图像隐写技术主要集中在基于载体图(cover image)的方法上,这些方法通常存在泄露隐藏图(secret image)的风险和对退化容器图(container image)不鲁棒的风险。受到最近扩散模型(diffusion models)发展的启发,作者发现了扩散模型的两个特性,即无需训练即可实现两张图像之间的转换以及对噪声数据有天然的鲁棒性。这些特性可以用来增强图像隐写任务中的安全性和鲁棒性。这是首次将扩散模型引入图像隐写领域的尝试。与基于载体图的图像隐写方法相比,作者提出的CRoSS框架在可控性、鲁棒性和安全性方面具有明显优势。

论文名称:《CRoSS: Diffusion Model Makes Controllable, Robust and Secure Image Steganography》
@article{yu2023cross,
作者:Yu, Jiwen and Zhang, Xuanyu and Xu, Youmin and Zhang, Jian
期刊:Advances in Neural Information Processing Systems (NeurIPS)
年份:2023
源码链接:https://github.com/vvictoryuki/CRoSS

一、论文思路


本文将无载体图图像隐写任务描述为由三幅图像及两个步骤构成:这三幅图像分别指的是待隐藏图像xsi、承载图像xhost与恢复图像xrestore,而这两个步骤则是嵌入步骤与提取步骤。待隐藏图像xsi是我们意图隐匿的图像,它经由嵌入步骤被巧妙地融入承载图像xhost之中。在通过网络传输之后,承载图像xhost可能会经历质量下降,转变为退化的承载图像x’host,随后我们通过提取步骤从退化的图像中还原出可视图像xrestore。按照这一阐述,嵌入步骤可以被看作是在待隐藏图像xsi与承载图像xhost之间建立的一种转换,而提取步骤则可以被视为嵌入步骤的逆向操作。

在这里插入图片描述
本文使用条件扩散模型来将秘密图像进行加密使之转换为容器图像,并使用DDIM反转来实现图像分布和噪声分布之间的双向转换,允许可逆图像转换,这样的方法使得容器图像能够成功被还原为秘密图像。

在这里插入图片描述

本文所涉及的所有资源的获取方式:这里

二、方法原理


1、CRoSS的隐藏过程
(1)原理:使用 DDIM 的前后向过程对秘密图像进行处理,得到容器图像。首先,使用一个私钥作为条件,对秘密图像进行加噪(前向过程),接着使用一个公钥作为条件,进行去噪(后向过程),这样就可以生成一个可以在互联网上传播的容器图像了。私钥用于描述秘密图像中的内容,而公钥用于控制容器图像中的内容。

在这里插入图片描述
如上图所示,prompt1是私钥,prompt2是公钥。并列的三幅图中,第一幅是秘密图像,第二幅是容器图像,第三幅是揭示图像。

(2)算法思路
输入:将被隐藏的秘密图像xsec,带有噪声估计器εθ的预训练条件扩散模型,采样时间步数T,以及作为私钥和公钥的两个不同条件kpri和kpub。
输出:用于隐藏秘密图像xsec的容器图像xcont。

在这里插入图片描述
2、CRoss的揭示过程
(1)原理:在揭示阶段,假设容器图像已通过互联网传输,并可能已损坏为x’cont,接收器需要使用相同的条件扩散模型和相应提示词,通过相同的正向和后向过程的逆过程将其显示回秘密图像。在整个无载体图像隐写过程中,我们不专门为图像隐写任务训练或微调扩散模型,而是依靠DDIM反转保证的固有可逆图像翻译。

(2)算法思路
输入:通过互联网传输的容器图像x’cont(可能从xcont退化),带有噪声估计器εθ的预训练条件扩散模型,采样时间步数T,私钥kpri和公钥kpub。
输出:从容器图像中揭示出的图像xrev。

三、实验过程


1、实验设置
实验选择了稳定Stable Diffusion v1.5作为条件扩散模型,并使用了确定性DDIM采样算法。由秘密图像生成噪声图和由噪声图生成容器图各自都由50步组成。为了实现可逆图像转换,我们将稳定扩散的引导刻度设置为1。对于作为私钥和公钥的给定条件,我们有三个选项:prompts(提示词)、ControlNets条件(depth maps, scribbles, segmentation maps)和LoRAs。

2、数据准备
实验收集了总共260张图像,并生成专门为无载体图像隐写术量身定制的提示词,称为Stego260。实验将数据集分为三类,即人类、动物和一般物体(如建筑、植物、食物、家具等)。数据集中的图像来自公开的数据集和谷歌搜索引擎。为了生成提示密钥,我们使用BLIP生成私钥,并使用ChatGPT或人工调整来执行语义修改并批量生成公钥。
下图为使用ChatGPT生成公钥的过程。

在这里插入图片描述
3、核心代码

class ODESolve:

    def __init__(self, model, NUM_DDIM_STEPS=50):
        scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
                                  set_alpha_to_one=False)
        self.model = model
        self.num_ddim_steps = NUM_DDIM_STEPS
        self.tokenizer = self.model.tokenizer
        self.model.scheduler.set_timesteps(self.num_ddim_steps)
        self.prompt = None
        self.context = None

    def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
        prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
        return prev_sample
    
    def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
        alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
        beta_prod_t = 1 - alpha_prod_t
        next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
        next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
        return next_sample
    
    def get_noise_pred_single(self, latents, t, context):
        noise_pred = self.model.unet(latents, t, context)["sample"]
        return noise_pred

    def get_noise_pred(self, latents, t, is_forward=True, context=None):
        if context is None:
            context = self.context
        guidance_scale = GUIDANCE_SCALE
        uncond_embeddings, cond_embeddings = context.chunk(2)
        noise_pred_uncond = self.model.unet(latents, t, uncond_embeddings)["sample"]
        noise_prediction_text = self.model.unet(latents, t, cond_embeddings)["sample"]
        noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
        if is_forward:
            latents = self.next_step(noise_pred, t, latents)
        else:
            latents = self.prev_step(noise_pred, t, latents)
        return latents

    @torch.no_grad()
    def latent2image(self, latents, return_type='np'):
        latents = 1 / 0.18215 * latents.detach()
        image = self.model.vae.decode(latents)['sample']
        if return_type == 'np':
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
            image = (image * 255).astype(np.uint8)
        return image

    @torch.no_grad()
    def image2latent(self, image):
        with torch.no_grad():
            if type(image) is Image:
                image = np.array(image)
            if type(image) is torch.Tensor and image.dim() == 4:
                latents = image
            else:
                image = torch.from_numpy(image).float() / 127.5 - 1
                image = image.permute(2, 0, 1).unsqueeze(0).to(device)
                latents = self.model.vae.encode(image)['latent_dist'].mean
                latents = latents * 0.18215
        return latents

    @torch.no_grad()
    def init_prompt(self, prompt: str):
        uncond_input = self.model.tokenizer(
            [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
            return_tensors="pt"
        )
        uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
        text_input = self.model.tokenizer(
            [prompt],
            padding="max_length",
            max_length=self.model.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
        self.context = torch.cat([uncond_embeddings, text_embeddings])
        self.prompt = prompt

    @torch.no_grad()
    def get_text_embeddings(self, prompt: str):
        text_input = self.model.tokenizer(
            [prompt],
            padding="max_length",
            max_length=self.model.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
        return text_embeddings

4、实验结果

运行ReadMe文件中的以下代码,快速运行代码进行图片加密解密。

python demo.py --image_path ./asserts/1.png --private_key "Effiel tower" --public_key "a tree" --save_path ./output --num_steps 50

成功运行界面如下:
在这里插入图片描述
打开output文件夹,查看实验过程中的三幅图像
在这里插入图片描述
待加密图像:
在这里插入图片描述
容器图像:
在这里插入图片描述
揭示图像:
在这里插入图片描述
可以发现,隐写后的图片自然且清晰度高,不易被察觉到隐藏了秘密图像,揭示图像还原度高,经过网络传输后仍然能够很好地被还原。

使用方式


编译器采用Pycharm,下载好项目代码后,阅读ReadMe文件以及“requirements.txt”。

首先运行ReadMe文件中的以下代码,下载好实验所需的所有库并配置好环境。

pip install -r requirements.txt

然后运行ReadMe文件中的以下代码,快速运行代码进行图片加密解密。

python demo.py --image_path ./asserts/1.png --private_key "Effiel tower" --public_key "a tree" --save_path ./output --num_steps 50

上述image_path后面的参数是要加密图像在设备上的路径,可以根据自己的图片路径进行调整;private_key后面的参数是私钥,根据不同待加密图片的内容自行调整;public_key后面的参数是公钥,根据想要生成的容器图像内容进行调整;save_path后面的参数是加密后的容器图像的保存地址,如果不修改的话每次运行程序都会覆盖前一次的运行结果;num_steps后面的参数是迭代次数,可以根据自己的需要进行调整,一般迭代次数越多效果越好,花费的时间越长。

部署方式


pytho==3.9
torch==2.2.0
transformers==4.33.2
diffusers==0.21.2
huggingface-hub==0.17.2
safetensors==0.3.3

编程未来,从这里启航!解锁无限创意,让每一行代码都成为你通往成功的阶梯,帮助更多人欣赏与学习!

更多内容详见:这里


http://www.kler.cn/a/398699.html

相关文章:

  • VMWare虚拟机安装华为欧拉系统
  • 【AtCoder】Beginner Contest 380-C.Move Segment
  • ARM(安谋) China处理器
  • 前后端请求响应
  • 关于强化学习的一份介绍
  • 【论文复现】STM32设计的物联网智能鱼缸
  • 关于linux中strip去除相关符号表的问题
  • 受害者缓存(Victim Cache)
  • ffmpeg 遇见错误
  • 机器学习—再次决定下一步做什么
  • Layer1公链介绍:Solana
  • MCU中的定时器
  • MySQL数据库2——SQL语句
  • 化工防爆巡检机器人:在挑战中成长,为化工安全保驾护航
  • [AI] 从“进取号”到现代 NLP:机器语言理解的挑战与未来
  • HTTP/2新型DDoS攻击:技术深度剖析与防御指南
  • Python | Leetcode Python题解之第564题寻找最近的回文数
  • 腾讯云内容合规基于springboot架构设计
  • 如何给openshift 单节点集群配置hugepage
  • 基于Java Springboot电商个性化推荐系统
  • c++数字雨实现
  • ubuntu 安装protobuf 3.4.0
  • C语言第十一周课——函数的调用
  • 网络层9——虚拟专用网VPN和网络地址转换NAT
  • 多目标优化算法:多目标红嘴蓝鹊优化算法(MORBMO)求解UF1-UF10,提供完整MATLAB代码
  • 开源,一天200star,解锁视频字幕生成新方式——一款轻量级开源字幕工具,免费,支持花字,剪映最新会员模式吃相太难看了