当前位置: 首页 > article >正文

HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用

联合物种分布模型(Joint Species Distribution Modelling,JSDM)在生态学领域,特别是群落生态学中发展最为迅速,它在分析和解读群落生态数据的革命性和独特视角使其受到广大国内外学者的关注。在学界不同研究团队研发出不同的联合物种模型,其中由芬兰的Ovaskainen教授领导的团队研发的R语言程序包Hmsc发展势头最为强劲。Hmsc是物种群落分层模型的缩写(Hierarchical Modelling of Species Communities),它是一种基于贝叶斯统计的多元分层广义线性混和效应模型( A multivariate hierarchical generalized linear mixed model fitted with Bayesian inference)。该模型可以同时考虑物种多度、环境变量、系统发育信息、物种属性及时空数据,是目前对于群落生态学各种数据利用最为充分的模型。它既可以对于单物种(变量)开展分析(可替代贝叶斯广义线性混合效应模型);又可以同时开展多物种(群落水平)分析,将生态位假说、生物交互作用(种间关联)、物种扩散限制及物种属性和系统发育对物种分布的影响等进行综合考虑。将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。

私信了解详情

夯实基础:专题1:R/Rstudio简介及入门【课前学习、提供学习资料】

1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

图片

专题2:群落生态学及数据统计分析概述

1) 群落生态学发展和研究趋势简介

2) 群落形成机制及物种装配规则(Species Assemble Rules)

3) 群落生态数据类型、特点及准备

4) 群落生态数据与群落生态学主要科学问题关联

图片

专题3:联合物种分布模型Hmsc及群落数据贝叶斯统计

1) 联合物种分布模型Hmsc贝叶斯统计简介

2) 联合物种分布模型Hmsc参数估计MCMC

3) 联合物种分布模型Hmsc参数及对应群落生态假说

图片

专题4:单物种(物种水平)/单变量Hmsc贝叶斯统计

1)Hmsc程序包基本语法、参数选择、固定效应和随机效应设置、模型诊断等

2)Hmsc单变量贝叶斯估计VS 单变量brms包贝叶斯估计异同

3)Hmsc物种属性数据单变量贝叶斯估计案例

4)Hmsc物种有无(0,1)数据单变量贝叶斯估计案例

5)Hmsc计数数据(多度)单变量贝叶斯估计案例(泊松分布、过度离散、零膨胀等)

6)Hmsc混合效应模型:固定效应+混合效应+空间自相关

图片

专题5:多物种(群落水平)Hmsc贝叶斯统计模型

1)Hmsc多物种(群落水平)贝叶斯统计模型构建介绍

2)Hmsc低维多物种联合分布模型构建

(1)模型构建、物种分布设置

(2)解释变量引入(环境筛)

(3)物种关联关系确定(生物筛)

(4)模型诊断及性能评估

3)Hmsc高维多物种联合分布模型构建

(1)模型构建、物种分布设置

(2)物种性状、系统发育信息及环境变量引入

(3)模型诊断及性能评估

(4)模型调整(先验分布、解释变量等)、拟合和重评估

(5)结果展示,包括参数热图、种间关联、变差分解(Variation Partitioning)及排序(潜变量)等

图片

专题6:Hmsc包群落生态数据分析高阶应用经典案例

1)Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)

2)Hmsc分析物种属性与环境关系案例

3)Hmsc分析响应变量为不同分布类型案例

4)Hmsc空间数据分析案例

5)Hmsc时间数据分析案例

6)Hmsc模型中环境变量、物种属性、系统发育、数据分层设置综合案例

图片


http://www.kler.cn/a/400561.html

相关文章:

  • STM32 创建一个工程文件(寄存器、标准库)
  • Web3浪潮下的区块链应用:从理论到实践的全面解析
  • PhpSpreadsheet导出图片
  • 一文速学---红黑树
  • 大模型呼叫中心,如何建设呼入机器人系统?
  • Python 人脸检测:使用 Dlib 和 OpenCV
  • SpringBoot使用@Validated注解实现参数的验证
  • Docker中的一些常用命令
  • git根据远程分支创建本地新分支
  • 文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于改进容积卡尔曼滤波的含光伏配电网动态状态估计》
  • 【大语言模型】ACL2024论文-15 大型语言模型中的最佳解释推断
  • 麒麟DHCP服务的部署
  • 大数据学习16之Spark-Core
  • 商业物联网详细指南:优势与挑战
  • emerge 命令学习笔记
  • Flume1.9.0自定义拦截器
  • 跨平台WPF框架Avalonia教程 一
  • 【论文阅读】WaDec: Decompiling WebAssembly Using Large Language Model
  • 使用 .NET 创建新的 WPF 应用
  • web——upload-labs——第十关——.空格.绕过
  • HTTP 缓存策略
  • 网络卡绑定详解:提升网络性能与冗余的最佳实践
  • 【Zookeeper】一、Zookeeper的使命
  • 激光雷达不够用,怎么办?Ubuntu如何用一个激光雷达实现两个激光雷达的扫描点云效果?点云配准ICP,点云拼接、话题转换、ROS重录制bag包。
  • 互联网演进跨越半世纪,智能化时代呼唤Net5.5G网络新代际
  • React 教程第一节 简介概述 以及 特点