当前位置: 首页 > article >正文

Flink vs Spark

Flink vs Spark

Flink和Spark都是大数据处理领域的热门分布式计算框架,它们有各自的特点和优势,适用于不同的场景。本文对两者进行对比。

一、技术理念与架构

  • Flink:

    • 基于事件驱动,面向流的处理框架。
    • 支持真正的流计算,即基于每个事件一行一行地流式处理。
    • 可以基于流来模拟批进行计算,实现批处理,具有更好的技术扩展性。
  • Spark:

    • 使用微批来模拟流计算,基于Micro-batch。
    • 数据流以时间为单位被切分为一个个批次,通过分布式数据集RDD进行批量处理,是一种伪实时处理。
    • 最初是一个批处理框架,后来添加了流处理功能。

二、时间机制与事件处理

  • Flink:

    • 支持事件时间、注入时间和处理时间。
    • 同时支持watermark机制处理迟到的数据,在处理乱序大实时数据时具有较大优势。
  • Spark:

    • Spark Streaming只支持处理时间,使用processing time来近似地实现event time相关的业务。
    • Structured Streaming支持处理时间和事件时间,并引入了watermark机制来处理滞后数据,但相比Flink在事件时间处理方面仍显较弱。

三、状态管理与窗口处理

  • Flink:

    • 具有内置的状态管理功能,使得在流处理应用中更容易管理状态。
    • 提供更灵活的窗口处理功能,支持更多种类的窗口类型和处理方式。
  • Spark:

    • 需要依赖外部存储系统来管理状态。
    • 窗口处理功能相对较为简单。

四、性能与适用场景

  • Flink:

    • 在处理流数据时的性能通常比Spark更好,尤其是在大规模和复杂的流处理场景下。
    • 更适用于复杂的流处理场景和需要低延迟的应用。
  • Spark:

    • 在批处理方面表现出色,且由于提供了丰富的API和高级功能(比如SQL查询、机器学习和图计算),使得用户可以轻松地开发复杂的分布式应用程序。
    • 更适用于批处理和简单的流处理场景。

五、其他特性

  • Flink:

    • 高吞吐和低延迟:每秒处理数百万个事件,毫秒级延迟。
    • 结果的准确性:对于乱序事件流,事件时间语义仍然能提供一致且准确的结果。
    • 精确一次的状态一致性保证。
    • 高可用:与K8S、YARN紧密集成,支持从故障中快速恢复和动态扩展任务。
  • Spark:

    • 高速性:基于内存计算的分布式计算框架,可以比传统的MapReduce作业快上几个数量级。
    • 易用性:提供了丰富的API,支持多语言,并提供了丰富的高级功能。
    • 弹性:提供了弹性的分布式数据集抽象,容错性强。
    • 通用性:支持多种应用场景,如批处理、交互式查询、流处理和机器学习等。

http://www.kler.cn/a/401299.html

相关文章:

  • Diff 算法的误判
  • 一文了解Android的核心系统服务
  • 远程jupyter lab的配置
  • DNS with libevent
  • Gin HTML 模板渲染
  • PyTorch数据集方法
  • 矢量拟合(2) - Vector Fitting算法原理
  • ROM修改进阶教程------安卓14去除修改系统应用后导致的卡logo验证步骤 适用安卓13 14 安卓15可借鉴参考
  • 视频号直播自动回复功能,浏览器自动化插件vx llike620
  • 使用FFmpeg实现视频与GIF的画中画效果
  • golang开发一个海盗王的登录更新器
  • 大模型投喂私有化的数据
  • 【JavaSE】【多线程】阻塞队列
  • Go语言中的错误嵌套
  • Elasticsearch面试内容整理-搜索与查询
  • 大数据-225 离线数仓 - 目前需求分析 指标口径 日志数据采集 taildir source HDFS Sink Agent Flume 优化配置
  • 【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os
  • 字符串地址解析 省市区
  • 20241119
  • 【Mac】未能完成该操作 Unable to locate a Java Runtime
  • HBase 基础操作
  • P1014 [NOIP1999 普及组] Cantor 表
  • 以Java为例,实现一个简单的命令行图书管理系统,包括添加图书、删除图书、查找图书等功能。
  • 【MySQL】系统学习数据库查询:深度学习查询操作全面详解
  • 二叉树(2)
  • Springboot项目搭建(1)-用户登录与注册