当前位置: 首页 > article >正文

Python Scikit-learn简介(二)

数据处理

数据划分

机器学习的数据,可以划分为训练集、验证集和测试集,也可以划分为训练集和测试集。
在这里插入图片描述

from sklearn.model_selection import train_test_split

# 示例数据
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

print("Training data:", X_train, y_train)
print("Testing data:", X_test, y_test)

数据清洗

数据清洗是数据预处理的第一步,涉及处理缺失值、重复数据、异常值等。

import pandas as pd

# 创建一个包含缺失值和重复数据的DataFrame
data = pd.DataFrame({
    'A': [1, 2, np.nan, 4],
    'B': [5, 5, 7, 8],
    'C': [9, 10, 11, 12]
})

# 删除重复行
data = data.drop_duplicates()

# 填充缺失值
data = data.fillna(data.mean())

print(data)
特征提取与转换

特征提取是将原始数据转换为更适合机器学习模型的特征表示。Scikit-learn提供了多种特征提取工具,如DictVectorizer用于处理字典数据,CountVectorizer用于文本数据的词频统计。

from sklearn.feature_extraction.text import CountVectorizer

# 示例文本数据
text_data = ["hello world", "hello everyone", "world of programming"]

# 初始化CountVectorizer
vectorizer = CountVectorizer()

# 转换文本数据为词频矩阵
X = vectorizer.fit_transform(text_data)

print(X.toarray())
标准化与归一化

标准化和归一化是调整特征尺度的重要步骤,有助于提高某些算法的性能。

from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 示例数据
data = [[1, 2], [2, 3], [3, 4]]

# 标准化
scaler = StandardScaler()
standardized_data = scaler.fit_transform(data)

# 归一化
min_max_scaler = MinMaxScaler()
normalized_data = min_max_scaler.fit_transform(data)

print("Standardized data:", standardized_data)
print("Normalized data:", normalized_data)
缺失值处理

处理缺失值是数据预处理中的常见任务。Scikit-learn提供了SimpleImputer来填充缺失值。

from sklearn.impute import SimpleImputer

# 示例数据
data = [[1, 2], [np.nan, 3], [7, 6]]

# 初始化SimpleImputer,使用均值填充
imputer = SimpleImputer(strategy='mean')

# 填充缺失值
imputed_data = imputer.fit_transform(data)

print(imputed_data)
特征选择

在这里插入图片描述

监督学习算法

在这里插入图片描述
在这里插入图片描述

  • 线性模型
    • 线性模型是监督学习中最基础的模型之一,它假设特征之间的关系可以用一条直线(对于二元分类)或超平面(对于多类分类)来表示。线性模型主要包括线性回归(用于连续目标变量)和逻辑回归(用于分类目标变量)
  • 支持向量机
    • 支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,适用于分类和回归分析。在分类问题中,SVM旨在找到一个超平面,该超平面能够最大化不同类别之间的边际。
    • Scikit-learn提供了多种SVM实现,包括线性SVM和核SVM。线性SVM适用于线性可分数据,而核SVM通过使用核技巧,可以处理非线性可分数据。
  • 决策树
    • 决策树通过一系列的判断规则对数据进行分类,而随机森林是决策树的集成学习方法,通过构建多个决策树并进行投票来提高预测的准确性。
  • 随机森林
    • 随机森林是决策树的集成学习方法,通过构建多个决策树并进行投票来提高预测的准确性。
  • 集成学习方法
    • 监督学习中的梯度提升机(Gradient Boosting)是一种强大的集成学习算法,它通过迭代地训练决策树来最小化损失函数,从而提高模型的预测性能。Scikit-learn提供了一个名为GradientBoostingClassifier的类,用于实现梯度提升机。

无监督学习算法

在这里插入图片描述

  • 聚类分析
    • 聚类分析是将数据集中的样本分成多个组或簇的过程,使得同一簇内的样本相似度高,不同簇间的样本相似度低。K-Means是最常用的聚类算法之一。
  • 主成分分析(PCA)
    • 主成分分析(PCA)是一种用于降维的技术,它通过线性变换将数据投影到新的坐标系中,使得投影后的数据具有最大的方差。
  • 奇异值分解(SVD)
    • 奇异值分解(SVD)是一种矩阵分解技术,常用于降维和数据压缩。
  • 关联规则学习
    • 关联规则学习用于发现数据集中变量之间的有趣关系,如购物篮分析中的“啤酒与尿布”现象。Apriori算法是常用的关联规则学习算法之一。

http://www.kler.cn/a/403927.html

相关文章:

  • 解决vue-pdf的签章不显示问题
  • 贪心算法 -- 递增子序列
  • 【前端】CSS修改div滚动条样式
  • 解决Docker环境变量的配置的通用方法
  • 2411rust,1.75.0
  • 笔记记录 k8s-RBAC
  • VSCode 间距太小
  • Java的正则表达式和爬虫
  • 卷积运算和卷积定理
  • 网络编程多线程服务器应用
  • RNN数学公式推导
  • 单例模式与QT中的C++实现
  • Layui Table 行号
  • uniapp将图片url转换成base64支持app和h5
  • Django项目 | 实现用户注册和登录时的手机号验证
  • OBOO鸥柏28.6寸液晶广告屏:创新技术引领智能显示新时代
  • Fibonacci数列(斐波那契数列或兔子数列)
  • 算法设计与分析-上机实验10
  • 鸿蒙网络编程系列50-仓颉版TCP回声服务器示例
  • unity li2cpp逆向原理是什么?
  • 多路归并+set去重
  • C++详细笔记(六)string库
  • PHP实现双向队列
  • C++结构型设计模式之适配器模式概述
  • HTML和CSS 表单、表格练习
  • es写入磁盘的过程以及相关优化