当前位置: 首页 > article >正文

π-Day快乐:Python可视化π

π-Day快乐:Python可视化π

今天是3.14,正好是圆周率 π \pi π 的前3位,因此数学界将这一天定为 π \bold{\pi} π day

π \pi π 可能是最著名的无理数了,人类对 π \pi π 的研究从未停止。目前人类借助计算机已经计算到 π \pi π 小数点后31.4万亿位了!这个记录是由来自Google的日本女程序员岩尾遥创造的。据说该计算程序在25台虚拟机上运行了121天,涉及170TB的数据,最终获得精确到 π \pi π 小数点后31.4万亿位的成绩。

计算 π \pi π 的精度也是衡量计算机算力的一种方法,该方法始于冯·诺依曼。直到今天依然有很多数学家在孜孜不倦地研究 π \pi π 的各种性质,甚至有人认为 π \pi π 小数位蕴含着宇宙的终极奥秘。今天我们用Python将 π \pi π 可视化,看看会诞生什么惊人的图案。

在这里插入图片描述

文章目录

    • 思路
    • 点图
    • 线段图
    • 结论

思路

首先,我从网上下载了 π \pi π 小数点后100万位,保存在文本文件中。每50位一行,数据张这个样子:

14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436

然后我会用一定规则来可视化[0-9]这10个数字。目前想到的有两种:

  1. 点图 将[0-9]10个数字,每个数字赋一个颜色,然后一次绘制圆点。

在这里插入图片描述

  1. 线段图 [0-9]10个数字每个数字赋一个颜色和角度,绘制收尾相接的线段。

在这里插入图片描述

点图

点图的绘制相对简单,首先定义颜色:

# 圆点边线颜色
color = ['gold', 'goldenrod', 'red', 'firebrick', 'mediumvioletred', 'darkorchid', 'royalblue', 'lightseagreen', 'mediumseagreen', 'olivedrab']
# 圆点填充颜色
color_fill = ['khaki', 'moccasin', 'lightcoral', 'lightsalmon', 'orchid', 'mediumpurple', 'skyblue', 'aquamarine', 'lightgreen', 'palegreen']

数字[0-9]当作颜色的下标索引获取颜色,绘制单个圆点的代码如下:

def draw_dot(n: int, c: int):
    """ 绘制圆点
    
    :param n: 小数位数值
    :param c: 第几位
    :return: None
    """
    t.color(color_fill[n])
    t.begin_fill()
    t.circle(10)
    t.end_fill()
    t.color(color[n])
    t.circle(10)
    pos = t.pos()

绘制完一个圆点后,turtle移动到下一个位置,这里我设置为每40位换一行:

def move(c: int):
    """ 移动到下一位置

    :param c: 小数点后第几位
    :return: None
    """
    pos = t.pos()
    t.penup()
    if c % 40 == 0: #每40位换一行
        t.goto(-600, pos[1] - 30)
    else:
        t.goto(pos[0] + 30, pos[1])
    t.pendown()

最后我们只要读取 π \pi π 的小数位,循环绘制圆点即可:

import turtle

turtle.setup(1.0, 1.0)
t = turtle.Turtle()
t.hideturtle()
t.pensize(2)
t.penup()
t.goto(-600, 400)
t.pendown()
t.speed(0)

# 绘制整数位3
count = 1
num = 3
draw_dot(num, count)
move(count)

# 循环绘制小数位
with open('圆周率前100万位.txt') as f:
    for i in range(28): # 绘制28*50=1400位
        word = f.readline().strip()
        for a in word:
            num = int(a)
            count += 1
            draw_dot(num, count)
            move(count)
    f.close()
    
turtle.done()

最终效果如下图:

在这里插入图片描述

线段图

有了点图的基础,线段图的绘制相对简单。直接上代码:

import turtle

turtle.setup(1.0, 1.0)
t = turtle.Turtle()
t.hideturtle()
t.pensize(2)
t.pendown()
t.left(90)
t.speed(0)
color = ['gold', 'goldenrod', 'red', 'firebrick', 'mediumvioletred', 'darkorchid', 'royalblue', 'lightseagreen', 'mediumseagreen', 'greenyellow']

# 绘制整数位3
last_num = 3
t.color(color[last_num])
t.right(last_num * 36)
t.forward(40)

# 循环绘制小数位
with open('圆周率前100万位.txt') as f:
    for i in range(100):
        word = f.readline().strip()
        for a in word:
            current_num = int(a)
            t.color(color[current_num])
            angle = (current_num - last_num) * 36
            t.right(angle)
            t.forward(20)
            last_num = current_num
    f.close()

turtle.done()

最终效果:

在这里插入图片描述

结论

怎么样?很神奇吧?如果你有更好的可视化思路,欢迎留言评论交流。

最后,祝大家 π \pi π Day快乐!


http://www.kler.cn/a/405.html

相关文章:

  • 嵌入式轻量级开源操作系统:HeliOS的使用
  • 排序算法之快速排序、归并排序
  • lxml 解析xml\html
  • 【MySQL】十三,关于MySQL的全文索引
  • 【Java基础-26.1】Java中的方法重载与方法重写:区别与使用场景
  • C++23新特性解析:[[assume]]属性
  • 【linux】Linux基本指令(上)
  • 从Linux内核中学习高级C语言宏技巧
  • 【云原生】Swarm解决docker server的集群化管理和部署
  • 前端前沿web 3d可视化技术 ThreeJS学习全记录
  • 【小白】git是什么?gitee和git和github的关系?
  • ES+Redis+MySQL,这个高可用架构设计太顶了!
  • 2022-12-10青少年软件编程(C语言)等级考试试卷(五级)解析
  • 【C/C++】必知必会知识点大总结
  • 如何用python代码,更改照片尺寸,以及更换照片底色
  • 「Python 基础」常用模块
  • 【学习笔记】读取文件中的字符串与 fgets 的坑
  • js逆向爬取某音乐网站某歌手的歌曲
  • CentOS7安装python3超详细教程
  • 2分钟彻底搞懂“高内聚,低耦合”
  • Linux基本命令——操作演示
  • OpenAI 发布GPT-4——全网抢先体验
  • 07从零开始学Java之如何正确的编写Java代码?
  • HTTPS的加密原理(工作机制)
  • 深入理解JavaScript的事件冒泡与事件捕获
  • 网络安全 -- 常见的攻击方式和防守