skywalking es查询整理
索引介绍
sw_records-all
这个索引用于存储所有的采样记录,包括但不限于慢SQL查询、Agent分析得到的数据等。这些记录数据包括Traces、Logs、TopN采样语句和告警信息。它们被用于性能分析和故障排查,帮助开发者和运维团队理解服务的行为和性能特点。
mapping
{ "sw_records-all": { "aliases": { "sw_records-all": {} }, "mappings": { "_source": { "excludes": [ "tags" ] }, "properties": { "alarm_message": { "type": "keyword", "copy_to": [ "alarm_message_match" }, "alarm_message_match": { "type": "text", "analyzer": "oap_analyzer" }, "continuous_profiling_json": { "type": "keyword", "index": false }, "create_time": { "type": "long" }, "data_binary": { "type": "binary" }, "dump_binary": { "type": "binary" }, "dump_period": { "type": "integer" }, "dump_time": { "type": "long" }, "duration": { "type": "integer" }, "end_time_nanos": { "type": "integer" }, "end_time_second": { "type": "long" }, "endpoint_name": { "type": "keyword" }, "entity_id": { "type": "keyword" }, "event": { "type": "keyword" }, "extension_config_json": { "type": "keyword", "index": false }, "fixed_trigger_duration": { "type": "long" }, "id0": { "type": "keyword", "index": false }, "id1": { "type": "keyword", "index": false }, "instance_id": { "type": "keyword" }, "last_update_time": { "type": "long" }, "latency": { "type": "long" }, "logical_id": { "type": "keyword" }, "max_sampling_count": { "type": "integer" }, "min_duration_threshold": { "type": "integer" }, "name": { "type": "keyword", "index": false }, "operation_time": { "type": "long" }, "operation_type": { "type": "integer", "index": false }, "process_labels_json": { "type": "keyword" }, "record_table": { "type": "keyword" }, "related_trace_id": { "type": "keyword" }, "rule_name": { "type": "keyword" }, "schedule_id": { "type": "keyword" }, "scope": { "type": "integer" }, "segment_id": { "type": "keyword" }, "sequence": { "type": "integer" }, "service_id": { "type": "keyword" }, "stack_binary": { "type": "binary" }, "stack_id": { "type": "keyword" }, "start_time": { "type": "long" }, "start_time_nanos": { "type": "integer" }, "start_time_second": { "type": "long" }, "statement": { "type": "keyword", "index": false }, "tags": { "type": "keyword" }, "tags_raw_data": { "type": "binary" }, "target_type": { "type": "integer" }, "task_id": { "type": "keyword" }, "time_bucket": { "type": "long" }, "timestamp": { "type": "long" }, "trace_id": { "type": "keyword", "index": false }, "trace_ref_type": { "type": "integer" }, "trace_segment_id": { "type": "keyword" }, "trace_span_id": { "type": "keyword" }, "trigger_type": { "type": "integer" }, "upload_time": { "type": "long" } } }, "settings": { "index": { "routing": { "allocation": { "include": { "_tier_preference": "data_content" } } }, "refresh_interval": "30s", "number_of_shards": "1", "provided_name": "sw_records-all-20241125", "creation_date": "1732464023751", "analysis": { "analyzer": { "oap_analyzer": { "type": "stop" } } }, "number_of_replicas": "1", "uuid": "qrRVCMSNSnO90iz9hHWD0Q", "version": { "created": "7170799" } } } } } |
sw_metrics-all
这个索引存储服务、服务实例及端点的元数据,即指标信息。这些指标数据包括服务的响应时间、吞吐量、错误率等关键性能指标,以分钟级别存储。这些数据对于监控服务性能至关重要,因为它们提供了实时的性能反馈,使得团队能够快速识别和解决性能问题。
metric_table枚举值
1、endpoint_cpm:端点的每分钟调用次数(CPM)
2、endpoint_percentile:端点的响应时间百分位数
3、endpoint_resp_time:端点的平均响应时间
4、endpoint_sla:服务等级协议(SLA)指标
5、endpoint_sidecar_internal_req_latency_nanos 和 endpoint_sidecar_internal_resp_latency_nanos:端点Sidecar内部请求和响应延迟的纳秒数
6、instance_jvm_xxx:服务实例的JVM相关指标,如类加载数量、CPU使用率、内存使用情况、垃圾回收次数和线程状态等
7、meter_thread_pool:线程池相关的度量
8、service_instance_cpm、service_instance_resp_time、service_instance_sla:服务实例级别的CPM、响应时间和SLA指标
9、service_instance_sidecar_internal_req_latency_nanos 和 service_instance_sidecar_internal_resp_latency_nanos:服务实例级别的Sidecar内部请求和响应延迟的纳秒数
result
{ "key": "endpoint_cpm", "doc_count": 5763 }, { "key": "endpoint_percentile", "doc_count": 5763 }, { "key": "endpoint_resp_time", "doc_count": 5763 }, { "key": "endpoint_sla", "doc_count": 5763 }, { "key": "endpoint_sidecar_internal_req_latency_nanos", "doc_count": 5754 }, { "key": "endpoint_sidecar_internal_resp_latency_nanos", "doc_count": 5754 }, { "key": "instance_jvm_class_loaded_class_count", "doc_count": 2811 }, { "key": "instance_jvm_class_total_loaded_class_count", "doc_count": 2811 }, { "key": "instance_jvm_class_total_unloaded_class_count", "doc_count": 2811 }, { "key": "instance_jvm_cpu", "doc_count": 2811 }, { "key": "instance_jvm_memory_heap", "doc_count": 2811 }, { "key": "instance_jvm_memory_heap_max", "doc_count": 2811 }, { "key": "instance_jvm_memory_noheap", "doc_count": 2811 }, { "key": "instance_jvm_memory_noheap_max", "doc_count": 2811 }, { "key": "instance_jvm_old_gc_count", "doc_count": 2811 }, { "key": "instance_jvm_old_gc_time", "doc_count": 2811 }, { "key": "instance_jvm_thread_blocked_state_thread_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_daemon_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_live_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_peak_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_runnable_state_thread_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_timed_waiting_state_thread_count", "doc_count": 2811 }, { "key": "instance_jvm_thread_waiting_state_thread_count", "doc_count": 2811 }, { "key": "instance_jvm_young_gc_count", "doc_count": 2811 }, { "key": "instance_jvm_young_gc_time", "doc_count": 2811 }, { "key": "meter_thread_pool", "doc_count": 2811 }, { "key": "service_instance_cpm", "doc_count": 1661 }, { "key": "service_instance_resp_time", "doc_count": 1661 }, { "key": "service_instance_sla", "doc_count": 1661 }, { "key": "service_instance_sidecar_internal_req_latency_nanos", "doc_count": 1659 }, { "key": "service_instance_sidecar_internal_resp_latency_nanos", "doc_count": 1659 } |
mapping
{ "sw_metrics-all-20241125": { "aliases": { "sw_metrics-all": {} }, "mappings": { "properties": { "address": { "type": "keyword" }, "agent_id": { "type": "keyword" }, "component_id": { "type": "integer", "index": false }, "component_ids": { "type": "keyword", "index": false }, "count": { "type": "long", "index": false }, "dataset": { "type": "text", "index": false }, "datatable_count": { "type": "text", "index": false }, "datatable_summation": { "type": "text", "index": false }, "datatable_value": { "type": "text", "index": false }, "denominator": { "type": "long" }, "dest_endpoint": { "type": "keyword" }, "dest_process_id": { "type": "keyword" }, "dest_service_id": { "type": "keyword" }, "dest_service_instance_id": { "type": "keyword" }, "detect_type": { "type": "integer" }, "double_summation": { "type": "double", "index": false }, "double_value": { "type": "double" }, "ebpf_profiling_schedule_id": { "type": "keyword" }, "end_time": { "type": "long" }, "endpoint": { "type": "keyword" }, "endpoint_traffic_name": { "type": "keyword", "copy_to": [ "endpoint_traffic_name_match" ] }, "endpoint_traffic_name_match": { "type": "text", "analyzer": "oap_analyzer" }, "entity_id": { "type": "keyword" }, "instance_id": { "type": "keyword" }, "instance_traffic_name": { "type": "keyword", "index": false }, "int_value": { "type": "integer" }, "label": { "type": "keyword" }, "labels_json": { "type": "keyword", "index": false }, "last_ping": { "type": "long" }, "last_update_time_bucket": { "type": "long" }, "layer": { "type": "integer" }, "match": { "type": "long", "index": false }, "message": { "type": "keyword" }, "metric_table": { "type": "keyword" }, "name": { "type": "keyword" }, "numerator": { "type": "long" }, "parameters": { "type": "keyword", "index": false }, "percentage": { "type": "integer" }, "precision": { "type": "integer", "index": false }, "process_id": { "type": "keyword" }, "profiling_support_status": { "type": "integer" }, "properties": { "type": "text", "index": false }, "ranks": { "type": "text", "index": false }, "remote_service_name": { "type": "keyword" }, "represent_service_id": { "type": "keyword" }, "represent_service_instance_id": { "type": "keyword" }, "s_num": { "type": "long", "index": false }, "service": { "type": "keyword" }, "service_group": { "type": "keyword" }, "service_id": { "type": "keyword" }, "service_instance": { "type": "keyword" }, "service_instance_id": { "type": "keyword" }, "service_name": { "type": "keyword" }, "service_traffic_name": { "type": "keyword", "copy_to": [ "service_traffic_name_match" ] }, "service_traffic_name_match": { "type": "text", "analyzer": "oap_analyzer" }, "short_name": { "type": "keyword" }, "source_endpoint": { "type": "keyword" }, "source_process_id": { "type": "keyword" }, "source_service_id": { "type": "keyword" }, "source_service_instance_id": { "type": "keyword" }, "span_name": { "type": "keyword" }, "start_time": { "type": "long" }, "summation": { "type": "long", "index": false }, "t_num": { "type": "long", "index": false }, "tag_key": { "type": "keyword" }, "tag_type": { "type": "keyword" }, "tag_value": { "type": "keyword" }, "task_id": { "type": "keyword" }, "time_bucket": { "type": "long" }, "total": { "type": "long", "index": false }, "total_num": { "type": "long", "index": false }, "type": { "type": "keyword" }, "uuid": { "type": "keyword" }, "value": { "type": "long" } } }, "settings": { "index": { "routing": { "allocation": { "include": { "_tier_preference": "data_content" } } }, "refresh_interval": "30s", "number_of_shards": "1", "provided_name": "sw_metrics-all-20241125", "creation_date": "1732464018472", "analysis": { "analyzer": { "oap_analyzer": { "type": "stop" } } }, "number_of_replicas": "1", "uuid": "WzZSWrHRSKaHFFwbm5D75A", "version": { "created": "7170799" } } } } } |
字段解释
address:服务实例的网络地址
agent_id:SkyWalking Agent的唯一标识符
component_id:组件的唯一标识符
component_ids:一个包含多个组件ID的列表,用于标识服务中使用的所有组件
count:计数器,记录调用次数等
dataset:数据集的标识符,用于区分不同类型的监控数据
datatable_count、datatable_summation、datatable_value:与数据表相关的字段,用于存储汇总数据
denominator:用于计算比率的分母值
dest_endpoint:目标端点的名称,用于标识服务调用的目标
dest_process_id、dest_service_id、dest_service_instance_id:目标进程、服务和实例的唯一标识符
detect_type:检测类型的标识符
double_summation:双精度浮点数的总和
double_value:双精度浮点数值
ebpf_profiling_schedule_id:eBPF性能分析任务的标识符
end_time:事件或记录的结束时间戳
endpoint:端点的名称,用于标识服务中的特定操作
endpoint_traffic_name:端点流量的名称,用于标识端点的流量
entity_id:实体的唯一标识符,用于标识服务、端点或实例
instance_id:服务实例的唯一标识符
instance_traffic_name:服务实例流量的名称
int_value:整数值
label:用于分类或标记数据的标签
labels_json:包含多个标签的JSON字符串
last_ping:服务实例最后一次发送心跳的时间戳
last_update_time_bucket:数据最后一次更新的时间桶
layer:服务的层次或层级
match:用于匹配规则的标识符
message:与事件或日志相关的信息
metric_table:度量表的名称,用于标识特定的度量数据
name:实体、服务或端点的名称
numerator:用于计算比率的分子值
parameters:与事件或操作相关的参数
percentage:百分比值
precision:数据的精度
process_id:进程的唯一标识符
profiling_support_status:性能分析支持的状态
properties:实体的属性
ranks:排名或等级
remote_service_name:远程服务的名称
represent_service_id、represent_service_instance_id:表示服务或实例的唯一标识符
s_num:用于统计的数值
service:服务的名称
service_group:服务组的名称
service_id:服务的唯一标识符
service_instance:服务实例的名称
service_instance_id:服务实例的唯一标识符
service_name:服务的名称
service_traffic_name:服务流量的名称
short_name:实体的简称或缩写
source_endpoint:源端点的名称
source_process_id、source_service_id、source_service_instance_id:源进程、服务和实例的唯一标识符
span_name:跨度(Span)的名称,用于分布式追踪
start_time:事件或记录的开始时间戳
summation:数值的总和
t_num:用于统计的数值
tag_key、tag_type、tag_value:标签的键、类型和值
task_id:任务的唯一标识符
time_bucket:时间桶,用于数据的时序聚合
total、total_num:总数和数量
type:数据的类型
uuid:全局唯一标识符
value:度量值
sw_segment
sw_segment索引用于收集链路信息日志。在SkyWalking中,一个Segment代表一个分布式追踪的路径,它由多个Span组成,记录了一次完整的请求处理过程。这些数据对于理解服务之间的调用关系和性能特性非常重要,它们是实现分布式追踪和性能监控的基础。
sw_zipkin_span
sw_zipkin_span索引用于存储Zipkin跟踪的Span数据。SkyWalking可以作为Zipkin的替代服务器,提供高级功能,这个索引就是用来兼容Zipkin格式的追踪数据。
sw_browser_error_log
sw_browser_error_log索引用于收集浏览器日志,特别是错误日志。这些日志对于前端监控和错误分析非常有用,可以帮助开发者了解用户在使用应用时遇到的前端问题。
sw_log
sw_log索引用于收集除浏览器外的日志。这些日志可能来自于后端服务、中间件或其他系统组件,对于整体的系统监控和日志分析非常重要。
sw_continuous_profiling_policy
这个索引用于存储连续性能分析(Continuous Profiling)的策略配置。连续性能分析是SkyWalking的一个特性,它允许基于预设的策略自动触发性能分析任务。这些策略可以定义何时以及如何对特定的目标(如进程或服务)进行性能分析,以便及时发现和诊断性能问题。例如,当eBPF Agent检测到某个进程的指标符合策略规则时,它会立即触发对该进程的性能分析任务,从而减少中间步骤,加快定位性能问题的能力
sw_ui_template
sw_ui_template索引用于存储SkyWalking UI的模板配置。这些模板定义了SkyWalking UI中的仪表板和视图,包括官方提供的默认仪表板以及用户自定义的仪表板。用户可以通过这些模板来创建新的仪表板,添加新的标签/页面/小部件,并根据自己的偏好重新配置仪表板。模板支持层(Layer)和实体类型(Entity Type)的概念,这对于理解和自定义SkyWalking UI中的仪表板至关重要
查询语句整理
查询sw_metrics-all索引
1、查找特定时间范围内,与特定服务相关的服务关系指标
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "bool": { "should": [ { "term": { "source_service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } }, { "term": { "dest_service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_server_side", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1000, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "component_ids": { "terms": { "field": "component_ids", "size": 10, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" } } } } } } |
2、对特定时间范围内的服务间关系数据进行聚合分析
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "bool": { "should": [ { "term": { "source_service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } }, { "term": { "dest_service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_client_side", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1000, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "component_ids": { "terms": { "field": "component_ids", "size": 10, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" } } } } } } |
3、统计服务下的实例流量
{ "size": 5000, "query": { "bool": { "must": [ { "range": { "last_ping": { "from": 202411221112, "to": null, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "term": { "service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1", "boost": 1.0 } } }, { "term": { "metric_table": { "value": "instance_traffic", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } } } |
4、统计服务下的端点流量
{ "size": 20, "query": { "bool": { "must": [ { "term": { "service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1", "boost": 1.0 } } }, { "term": { "metric_table": { "value": "endpoint_traffic", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } } } |
5、查询标签数据
{ "query": { "bool": { "must": [ { "term": { "tag_type": { "value": "TRACE", "boost": 1.0 } } }, { "term": { "metric_table": { "value": "tag_autocomplete", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "tag_key": { "terms": { "field": "tag_key", "size": 100, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "order": [ { "_count": "desc" }, { "_key": "asc" } ] } } } } |
6、统计服务流量
{ "size": 5000, "query": { "bool": { "must": [ { "term": { "layer": { "value": 2, "boost": 1.0 } } }, { "term": { "metric_table": { "value": "service_traffic", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } } } |
7、计算服务间的服务每分钟调用次数
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "MTkyLjE2OC4zMC4xOjkwOTI7MTkyLjE2OC4zMC4zOjkwOTI=.1-c2VydmljZTo6dGVuZGF0YS1jb3JwLXNlcnZpY2U=.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_server_cpm", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
8、计算服务间的服务响应时间
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS1iaXpyLXNlcnZpY2U=.1-c2VydmljZTo6dGVuZGF0YS1nbG9jby1zZXJ2aWNl.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_server_resp_time", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
9、计算服务间的服务客户端响应时间
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS1tY3Mtc2VydmljZQ==.1-MTkyLjE2OC4zMC4xOjkwOTI7MTkyLjE2OC4zMC4zOjkwOTI=.0" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_client_resp_time", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
10、计算服务间的客户端每分钟调用次数
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS10cmFuc2xhdGlvbi1zZXJ2aWNl.1-YXBpLnRyYW5zbGF0b3IuYXp1cmUuY246NDQz.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_relation_client_cpm", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
11、计算服务响应时间service_resp_time
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS1tY3Mtc2VydmljZQ==.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_resp_time", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
12、计算服务级别协议的成功百分比service_sla
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS1vcGVuYXBpLWdhdGV3YXktc2VydmljZQ==.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_sla", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "percentage": { "avg": { "field": "percentage" } } } } } } |
13、计算服务每分钟请求数service_cpm
{ "size": 0, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "terms": { "entity_id": [ "c2VydmljZTo6dGVuZGF0YS1kZnMtc2VydmljZQ==.1" ], "boost": 1.0 } }, { "term": { "metric_table": { "value": "service_cpm", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 1, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "_count": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
14、查询网络地址别名
{ "size": 5000, "query": { "bool": { "must": [ { "term": { "metric_table": { "value": "network_address_alias", "boost": 1.0 } } }, { "range": { "last_update_time_bucket": { "from": 202411221132, "to": null, "include_lower": true, "include_upper": true, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } } } |
15、检索 service为service::tendata-contact-service的事件列表
{ "from": 0, "size": 20, "query": { "bool": { "must": [ { "term": { "metric_table": { "value": "events", "boost": 1.0 } } }, { "term": { "service": { "value": "service::tendata-contact-service", "boost": 1.0 } } }, { "range": { "start_time": { "from": 1732245120000, "to": null, "include_lower": false, "include_upper": true, "boost": 1.0 } } }, { "range": { "end_time": { "from": null, "to": 1732246980000, "include_lower": true, "include_upper": false, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "start_time": { "order": "desc" } } ] } |
16、分页获取特定时间段内特定服务指标数据,并按时间戳排序
{ "from": 0, "size": 15, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 20241122111200, "to": 20241122114259, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "term": { "service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "timestamp": { "order": "desc" } } ] } |
17、根据传递的id查询端点信息
{ "size": 156, "query": { "ids": { "values": [ "endpoint_traffic_c2VydmljZTo6dGVuZGF0YS1nYXRld2F5LXNlcnZpY2U=.1_L2luc2lnaHQtc2VhcmNoL3YxL3Byb2dyYW1tZXMvMjkyNTcvbWFya2V0LWNvdW50ZXJwYXJ0eS1hcmVh", "endpoint_traffic_c2VydmljZTo6dGVuZGF0YS1nYXRld2F5LXNlcnZpY2U=.1_L2NvcnAvdjIvY29tcGFuaWVzLzEwYzdkMWVjYTY4NTE0NDQ1NzQ5OWVkZTJkZTQxY2I1L3JlZnJlc2gvcmVzdWx0" ], "boost": 1.0 } } } |
18、查询某个服务的每分钟请求次数最多的10个接口
{ "query": { "bool": { "must": [ { "term": { "metric_table": { "value": "endpoint_cpm", "boost": 1.0 } } }, { "terms": { "service_id": [ "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1" ], "boost": 1.0 } }, { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 10, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "value": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
19、查询某个服务的响应时间最大的10个接口
{ "query": { "bool": { "must": [ { "term": { "metric_table": { "value": "endpoint_resp_time", "boost": 1.0 } } }, { "terms": { "service_id": [ "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1" ], "boost": 1.0 } }, { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 10, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "value": "desc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "value": { "avg": { "field": "value" } } } } } } |
20、查询某个服务的指定时间范围内成功率最小的10个接口
{ "query": { "bool": { "must": [ { "term": { "metric_table": { "value": "endpoint_sla", "boost": 1.0 } } }, { "terms": { "service_id": [ "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1" ], "boost": 1.0 } }, { "range": { "time_bucket": { "from": 202411221112, "to": 202411221142, "include_lower": true, "include_upper": true, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "entity_id": { "terms": { "field": "entity_id", "size": 10, "min_doc_count": 1, "shard_min_doc_count": 0, "show_term_doc_count_error": false, "execution_hint": "map", "order": [ { "percentage": "asc" }, { "_key": "asc" } ], "collect_mode": "breadth_first" }, "aggregations": { "percentage": { "avg": { "field": "percentage" } } } } } } |
21、查询标签信息
{ "size": 12, "query": { "ids": { "values": [ "tag_autocomplete_20241122_TRACE_db.instance_[im_moldova-2024, im_moldova-2022, im_moldova-2023, im_moldova-2021]", "tag_autocomplete_20241122_TRACE_db.instance_[a04b2a53a6d946ad9fe525cd1ab2646a_alias]", "tag_autocomplete_20241122_TRACE_db.instance_[im_maritime_silk_bol-2022, im_maritime_silk_bol-2023, im_maritime_silk_bol-2021, im_maritime_silk_bol-2024]" ], "boost": 1.0 } } } |
查询sw_records-all索引
1、查询优化任务列表
{ "size": 200, "query": { "bool": { "must": [ { "term": { "record_table": { "value": "profile_task", "boost": 1.0 } } }, { "range": { "time_bucket": { "from": 202411221137, "to": null, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "range": { "time_bucket": { "from": null, "to": 202411221147, "include_lower": true, "include_upper": true, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "start_time": { "order": "desc" } } ] } |
2、查询sw_records-all与特定跨度(Span)关联的事件记录
{ "size": 100, "query": { "bool": { "must": [ { "term": { "record_table": { "value": "span_attached_event_record", "boost": 1.0 } } }, { "terms": { "related_trace_id": [ "ab80cf2b85fa4f3e9baabd114f3b909e.98.17322469467401053" ], "boost": 1.0 } }, { "terms": { "trace_ref_type": [ 0 ], "boost": 1.0 } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "start_time_second": { "order": "asc" } }, { "start_time_nanos": { "order": "asc" } } ] } |
3、检索ebpf优化任务
{ "size": 200, "query": { "bool": { "must": [ { "term": { "record_table": { "value": "ebpf_profiling_task", "boost": 1.0 } } }, { "term": { "service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } }, { "terms": { "target_type": [ 1, 2 ], "boost": 1.0 } }, { "term": { "trigger_type": { "value": 1, "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "create_time": { "order": "desc" } } ] } |
4、查询性能任务日志
{ "size": 10000, "query": { "bool": { "must": [ { "term": { "record_table": { "value": "profile_task_log", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "operation_time": { "order": "desc" } } ] } |
查询sw_segment索引
1、查询某个服务的流量
{ "size": 1, "query": { "ids": { "values": [ "service_traffic_MTkyLjE2OC4xMS4xMDo1Njcy.15" ], "boost": 1.0 } } } |
2、查询某个调用链信息
{ "size": 200, "query": { "term": { "trace_id": { "value": "ab80cf2b85fa4f3e9baabd114f3b909e.98.17322469467401053", "boost": 1.0 } } } } |
3、分页获取特定时间段内特定服务调用数据,并按开始时间排序
{ "from": 0, "size": 20, "query": { "bool": { "must": [ { "range": { "time_bucket": { "from": 20241122111200, "to": 20241122114259, "include_lower": true, "include_upper": true, "boost": 1.0 } } }, { "term": { "service_id": { "value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "sort": [ { "start_time": { "order": "desc" } } ] } |