【高等数学学习记录】洛必达法则
一、知识点
-
定理1(洛必达法则)
设
(1) 当 x → a x\rightarrow a x→a 时,函数 f ( x ) f(x) f(x) 及 F ( x ) F(x) F(x) 都趋于零;
(2) 在点 a a a 的某去心邻域内, f ′ ( x ) f'(x) f′(x) 及 F ′ ( x ) F'(x) F′(x) 都存在且 F ′ ( x ) ≠ 0 F'(x)\neq 0 F′(x)=0;
(3) lim x → a f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} limx→aF′(x)f′(x) 存在(或为无穷大),
那么 lim x → a f ( x ) F ( x ) = lim x → a f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow a}\frac{f(x)}{F(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} limx→aF(x)f(x)=limx→aF′(x)f′(x).
-
定理2
设
(1) 当 x → ∞ x\rightarrow \infty x→∞ 时,函数 f ( x ) f(x) f(x) 及 F ( x ) F(x) F(x) 都趋于零;
(2) 当 ∣ x ∣ > N |x|>N ∣x∣>N 时 f ′ ( x ) f'(x) f′(x) 与 F ′ ( x ) F'(x) F′(x) 都存在,且 F ′ ( x ) ≠ 0 F'(x)\neq 0 F′(x)=0;
(3) lim x → ∞ f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow \infty}\frac{f'(x)}{F'(x)} limx→∞F′(x)f′(x) 存在(或为无穷大),
那么, lim x → ∞ f ( x ) F ( x ) = lim x → ∞ f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow \infty}\frac{f(x)}{F(x)}=\lim_{x\rightarrow \infty}\frac{f'(x)}{F'(x)} limx→∞F(x)f(x)=limx→∞F′(x)f′(x).
二、练习题
- 用洛必达法则求下列极限:
-
(1) lim x → 0 l n ( 1 + x ) x = lim x → 0 1 1 + x = 1 \lim_{x\rightarrow 0}\frac{ln(1+x)}{x}=\lim_{x\rightarrow 0}\frac{1}{1+x}=1 limx→0xln(1+x)=limx→01+x1=1
-
(2) lim x → 0 e x − e − x s i n x = lim x → 0 e x + e x c o s x = 2 \lim_{x\rightarrow 0}\frac{e^x-e^{-x}}{sinx}=\lim_{x\rightarrow 0}\frac{e^x+e^x}{cosx}=2 limx→0sinxex−e−x=limx→0cosxex+ex=2
-
(3) lim x → a s i n x − s i n a x − a = lim x → a c o s x 1 = c o s a \lim_{x\rightarrow a}\frac{sinx-sina}{x-a}=\lim_{x\rightarrow a}\frac{cosx}{1}=cosa limx→ax−asinx−sina=limx→a1cosx=cosa
-
(4) lim x → π s i n 3 x t a n 5 x = lim x → π 3 c o s x 5 s e c 2 x = − 3 5 \lim_{x\rightarrow \pi}\frac{sin3x}{tan5x}=\lim_{x\rightarrow \pi}\frac{3cosx}{5sec^2x}=-\frac{3}{5} limx→πtan5xsin3x=limx→π5sec2x3cosx=−53
-
(5) lim x → π 2 l n s i n x ( π − 2 x ) 2 = lim x → π 2 c o t x − 4 ( π − 2 x ) = lim x → π 2 − c s c 2 x 8 = 1 8 \lim_{x\rightarrow \frac{\pi}{2}}\frac{lnsinx}{(\pi-2x)^2}=\lim_{x\rightarrow \frac{\pi}{2}}\frac{cotx}{-4(\pi-2x)}=\lim_{x\rightarrow \frac{\pi}{2}}\frac{-csc^2x}{8}=\frac{1}{8} limx→2π(π−2x)2lnsinx=limx→2π−4(π−2x)cotx=limx→2π8−csc2x=81
-
(6) lim x → a x m − a m x n − a n = lim x → a m x m − 1 n x n − 1 = m a m − 1 n a n − 1 \lim_{x\rightarrow a}\frac{x^m-a^m}{x^n-a^n}=\lim_{x\rightarrow a}\frac{mx^{m-1}}{nx^{n-1}}=\frac{ma^{m-1}}{na^{n-1}} limx→axn−anxm−am=limx→anxn−1mxm−1=nan−1mam−1
-
(7) lim x → 0 + l n t a n 7 x l n t a n 2 x = lim x → 0 + 7 s e c 2 7 x t a n 7 x 2 s e c 2 2 x t a n 2 x = lim x → 0 + 7 s i n 2 x c o s 2 x 2 s i n 7 x c o s 7 x = lim x → 0 + c o s 2 x c o s 7 x = 1 \lim_{x\rightarrow 0^+}\frac{lntan7x}{lntan2x}=\lim_{x\rightarrow 0^+}\frac{\frac{7sec^27x}{tan7x}}{\frac{2sec^22x}{tan2x}}=\lim_{x\rightarrow 0^+}\frac{7sin2xcos2x}{2sin7xcos7x}=\lim_{x\rightarrow 0^+}\frac{cos2x}{cos7x}=1 limx→0+lntan2xlntan7x=limx→0+tan2x2sec22xtan7x7sec27x=limx→0+2sin7xcos7x7sin2xcos2x=limx→0+cos7xcos2x=1
-
(8) lim x → π 2 t a n x t a n 3 x = lim x → π 2 s i n x c o s 3 x c o s x s i n 3 x = lim x → π 2 c o s 3 x c o s x = 3 \lim_{x\rightarrow \frac{\pi}{2}}\frac{tanx}{tan3x}=\lim_{x\rightarrow \frac{\pi}{2}}\frac{sinxcos3x}{cosxsin3x}=\lim_{x\rightarrow \frac{\pi}{2}}\frac{cos3x}{cosx}=3 limx→2πtan3xtanx=limx→2πcosxsin3xsinxcos3x=limx→2πcosxcos3x=3
-
(9) lim x → + ∞ l n ( 1 + 1 x ) a r c c o t x = lim x → + ∞ − 1 x 2 1 + 1 x ⋅ ( − 1 − x 2 ) = lim x → + ∞ x 2 + 1 x 2 + x = 1 \lim_{x\rightarrow +\infty}\frac{ln(1+\frac{1}{x})}{arccotx}=\lim_{x\rightarrow +\infty}\frac{-\frac{1}{x^2}}{1+\frac{1}{x}}\cdot (-1-x^2)=\lim_{x\rightarrow +\infty}\frac{x^2+1}{x^2+x}=1 limx→+∞arccotxln(1+x1)=limx→+∞1+x1−x21⋅(−1−x2)=limx→+∞x2+xx2+1=1
-
(10) lim x → 0 l n ( 1 + x 2 ) s e c x − c o s x = lim x → 0 2 x ( 1 + x 2 ) ( s e c x t a n x + s i n x ) = lim x → 0 2 ( 1 + x 2 ) ( s e c 2 x + 1 ) ⋅ lim x → 0 x s i n x = 1 \lim_{x\rightarrow 0}\frac{ln(1+x^2)}{secx-cosx}=\lim_{x\rightarrow 0}\frac{2x}{(1+x^2)(secxtanx+sinx)}=\lim_{x\rightarrow 0}\frac{2}{(1+x^2)(sec^2x+1)}\cdot \lim_{x\rightarrow 0}\frac{x}{sinx}=1 limx→0secx−cosxln(1+x2)=limx→0(1+x2)(secxtanx+sinx)2x=limx→0(1+x2)(sec2x+1)2⋅limx→0sinxx=1
-
(11) lim x → 0 x c o t 2 x = lim x → 0 2 x s i n 2 x ⋅ lim x → 0 c o s 2 x 2 = 1 2 \lim_{x\rightarrow 0}xcot2x=\lim_{x\rightarrow 0}\frac{2x}{sin2x}\cdot \lim_{x\rightarrow 0}\frac{cos2x}{2}=\frac{1}{2} limx→0xcot2x=limx→0sin2x2x⋅limx→02cos2x=21
-
(12) lim x → 0 x 2 e 1 x 2 \lim_{x\rightarrow 0}x^2e^{\frac{1}{x^2}} limx→0x2ex21
令 t = 1 x 2 t=\frac{1}{x^2} t=x21
原式 = lim t → + ∞ e t t = lim t → + ∞ e t = + ∞ =\lim_{t\rightarrow +\infty}\frac{e^t}{t}=\lim_{t\rightarrow +\infty}e^t=+\infty =limt→+∞tet=limt→+∞et=+∞
-
(13) lim x → 1 ( 2 x 2 − 1 − 1 x − 1 ) = lim x → 1 1 − x ( x + 1 ) ( x − 1 ) = lim x → 1 − 1 x + 1 = − 1 2 \lim_{x\rightarrow 1}(\frac{2}{x^2-1}-\frac{1}{x-1})=\lim_{x\rightarrow 1}\frac{1-x}{(x+1)(x-1)}=\lim_{x\rightarrow 1}\frac{-1}{x+1}=-\frac{1}{2} limx→1(x2−12−x−11)=limx→1(x+1)(x−1)1−x=limx→1x+1−1=−21
-
(14) lim x → ∞ ( 1 + a x ) x = lim x → ∞ [ ( 1 + a x ) x a ] a = e a \lim_{x\rightarrow \infty}(1+\frac{a}{x})^x=\lim_{x\rightarrow \infty}[(1+\frac{a}{x})^{\frac{x}{a}}]^a=e^a limx→∞(1+xa)x=limx→∞[(1+xa)ax]a=ea
-
(15) lim x → 0 + x s i n x = lim x → 0 + e s i n x ⋅ l n x = e lim x → 0 + s i n x x ⋅ x l n x = e lim x → 0 + x l n x = e lim x → 0 + l n x 1 x = e lim x → 0 + − x = 1 \lim_{x\rightarrow 0^+}x^{sinx}=\lim_{x\rightarrow 0^+}e^{sinx\cdot lnx}=e^{\lim_{x\rightarrow 0^+}\frac{sinx}{x}\cdot xlnx}=e^{\lim_{x\rightarrow 0^+}xlnx}=e^{\lim_{x\rightarrow 0^+}\frac{lnx}{\frac{1}{x}}}=e^{\lim_{x\rightarrow 0^+}-x}=1 limx→0+xsinx=limx→0+esinx⋅lnx=elimx→0+xsinx⋅xlnx=elimx→0+xlnx=elimx→0+x1lnx=elimx→0+−x=1
- 验证极限 lim x → ∞ x + s i n x x \lim_{x\rightarrow \infty}\frac{x+sinx}{x} limx→∞xx+sinx 存在,但不能用洛必达法则得出.
-
解:
lim x → ∞ x + s i n x x = lim x → ∞ ( 1 + s i n x x ) = 1 + lim x → ∞ s i n x x = 1 + 0 = 1 \lim_{x\rightarrow \infty}\frac{x+sinx}{x}=\lim_{x\rightarrow \infty}(1+\frac{sinx}{x})=1+\lim_{x\rightarrow \infty}\frac{sinx}{x}=1+0=1 limx→∞xx+sinx=limx→∞(1+xsinx)=1+limx→∞xsinx=1+0=1
如果利用洛必达法则:
原式 = lim x → ∞ 1 + c o s x 1 = lim x → ∞ ( 1 + c o s x ) =\lim_{x\rightarrow \infty}\frac{1+cosx}{1}=\lim_{x\rightarrow \infty}(1+cosx) =limx→∞11+cosx=limx→∞(1+cosx),极限不存在
∴ \therefore ∴ 极限 lim x → ∞ x + s i n x x \lim_{x\rightarrow \infty}\frac{x+sinx}{x} limx→∞xx+sinx 存在,但不能用洛必达法则得出
- 验证极限 lim x → ∞ x 2 s i n 1 x s i n x \lim_{x\rightarrow \infty}\frac{x^2sin\frac{1}{x}}{sinx} limx→∞sinxx2sinx1 存在,但不能用洛必达法则得出.
-
解:
lim x → ∞ x 2 s i n 1 x s i n x = lim x → ∞ x s i n x ⋅ x s i n 1 x = 0 \lim_{x\rightarrow \infty}\frac{x^2sin\frac{1}{x}}{sinx}=\lim_{x\rightarrow \infty}\frac{x}{sinx}\cdot xsin\frac{1}{x}=0 limx→∞sinxx2sinx1=limx→∞sinxx⋅xsinx1=0
如果利用洛必达法则:
lim x → ∞ x 2 s i n 1 x s i n x = lim x → ∞ 2 x s i n 1 x + x 2 c o s 1 x ( − 1 x 2 ) c o s x = lim x → ∞ 2 x s i n 1 x − c o s 1 x c o s x \lim_{x\rightarrow \infty}\frac{x^2sin\frac{1}{x}}{sinx}=\lim_{x\rightarrow \infty}\frac{2xsin\frac{1}{x}+x^2cos\frac{1}{x}(-\frac{1}{x^2})}{cosx}=\lim_{x\rightarrow \infty}\frac{2xsin\frac{1}{x}-cos\frac{1}{x}}{cosx} limx→∞sinxx2sinx1=limx→∞cosx2xsinx1+x2cosx1(−x21)=limx→∞cosx2xsinx1−cosx1,极限不存在
∴ \therefore ∴ 极限 lim x → ∞ x 2 s i n 1 x s i n x \lim_{x\rightarrow \infty}\frac{x^2sin\frac{1}{x}}{sinx} limx→∞sinxx2sinx1 存在,但不能用洛必达法则得出
- 讨论函数 f ( x ) = { [ ( 1 + x ) 1 x e ] 1 x , x > 0 e − 1 2 , x ≤ 0 f(x)=\begin{cases}[\frac{(1+x)^{\frac{1}{x}}}{e}]^{\frac{1}{x}},&x>0\\ e^{-\frac{1}{2}},&x\leq0\end{cases} f(x)={[e(1+x)x1]x1,e−21,x>0x≤0,在点 x = 0 x=0 x=0 处的连续性.
-
解:
lim x → 0 − f ( x ) = lim x → 0 − e − 1 2 = e − 1 2 \lim_{x\rightarrow 0^-}f(x)=\lim_{x\rightarrow 0^-}e^{-\frac{1}{2}}=e^{-\frac{1}{2}} limx→0−f(x)=limx→0−e−21=e−21
lim x → 0 + f ( x ) = lim x → 0 + [ ( 1 + x ) 1 x e ] 1 x = lim x → 0 + e 1 x l n ( 1 + x ) − 1 x = e lim x → 0 + l n ( 1 + x ) − x x 2 = e lim x → 0 + − x 2 x ( 1 + x ) = e − 1 2 \lim_{x\rightarrow 0^+}f(x)=\lim_{x\rightarrow 0^+}[\frac{(1+x)^\frac{1}{x}}{e}]^{\frac{1}{x}}=\lim_{x\rightarrow 0^+}e^{\frac{\frac{1}{x}ln(1+x)-1}{x}}=e^{\lim_{x\rightarrow 0^+}\frac{ln(1+x)-x}{x^2}}=e^{\lim_{x\rightarrow 0^+}\frac{-x}{2x(1+x)}}=e^{-\frac{1}{2}} limx→0+f(x)=limx→0+[e(1+x)x1]x1=limx→0+exx1ln(1+x)−1=elimx→0+x2ln(1+x)−x=elimx→0+2x(1+x)−x=e−21
∴ lim x → 0 − f ( x ) = lim x → 0 + f ( x ) = e − 1 2 = f ( 0 ) \therefore \lim_{x\rightarrow 0^-}f(x)=\lim_{x\rightarrow 0^+}f(x)=e^{-\frac{1}{2}}=f(0) ∴limx→0−f(x)=limx→0+f(x)=e−21=f(0)
∴ f ( x ) \therefore f(x) ∴f(x) 在 x = 0 x=0 x=0 处连续
- 学习资料
1.《高等数学(第六版)》 ,同济大学数学系 编
- 感谢您的关注,更欢迎您的批评和指正!