根据导数的定义计算导函数
根据导数的定义计算导函数
- 1. Finding derivatives using the definition (使用定义求导)
- 1.1. **We want to differentiate f ( x ) = 1 / x f(x) = 1/x f(x)=1/x with respect to x x x**</font>
- 1.2. **We want to differentiate f ( x ) = x f(x) = \sqrt{x} f(x)=x with respect to x x x**</font>
- 1.3. **We want to differentiate f ( x ) = x + x 2 f(x) = \sqrt{x} + x^{2} f(x)=x+x2 with respect to x x x**</font>
- 1.4. **We want to differentiate f ( x ) = x n f(x) = x^{n} f(x)=xn with respect to x x x, where n n n is some positive integer**</font>
- 1.5. **We want to differentiate f ( x ) = x a f(x) = x^{a} f(x)=xa with respect to x x x, when a a a is any real number at all**</font>
- References
1. Finding derivatives using the definition (使用定义求导)
1.1. We want to differentiate f ( x ) = 1 / x f(x) = 1/x f(x)=1/x with respect to x x x
对 f ( x ) = 1 / x f(x) = 1/x f(x)=1/x 关于 x x x 求导
The definition of the derivative (导数的定义) is
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\begin{aligned} f'(x) = \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \end{aligned}
f′(x)=h→0limhf(x+h)−f(x)
If you just replace
h
h
h by 0
in the fraction, you end up with the indeterminate form
0
0
\frac{0}{0}
00.
如果只是用 0
替换
h
h
h,结果就会得到一个
0
0
\frac{0}{0}
00 的不定式。
So in our case we have
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
1
x
+
h
−
1
x
h
=
lim
h
→
0
x
−
(
x
+
h
)
(
x
+
h
)
x
h
=
lim
h
→
0
−
h
h
(
x
+
h
)
x
=
lim
h
→
0
−
1
(
x
+
h
)
x
=
−
1
(
x
+
0
)
x
=
−
1
x
2
\begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\frac{1}{x + h} - \frac{1}{x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\frac{x - (x + h)}{(x + h)x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{-h}{h(x + h)x} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{-1}{(x + h)x} \\ &= \frac{-1}{(x + 0)x} \\ &= -\frac{1}{x^2} \\ \end{aligned}
f′(x)=h→0limhf(x+h)−f(x)=h→0limhx+h1−x1=h→0limh(x+h)xx−(x+h)=h→0limh(x+h)x−h=h→0lim(x+h)x−1=(x+0)x−1=−x21
d
d
x
(
1
x
)
=
−
1
x
2
\begin{aligned} \frac{\text{d}}{\text{d}x}(\frac{1}{x}) = -\frac{1}{x^2} \\ \end{aligned}
dxd(x1)=−x21
1.2. We want to differentiate f ( x ) = x f(x) = \sqrt{x} f(x)=x with respect to x x x
对 f ( x ) = x f(x) = \sqrt{x} f(x)=x 关于 x x x 求导
Let’s multiply top and bottom by the conjugate of the numerator (分子和分母同时乘以分子的共轭表达式) to get
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
x
+
h
−
x
h
=
lim
h
→
0
x
+
h
−
x
h
×
x
+
h
+
x
x
+
h
+
x
=
lim
h
→
0
(
x
+
h
)
−
x
h
(
x
+
h
+
x
)
=
lim
h
→
0
h
h
(
x
+
h
+
x
)
=
lim
h
→
0
1
x
+
h
+
x
=
1
x
+
0
+
x
=
1
2
x
\begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h) - x}{h(\sqrt{x + h} + \sqrt{x})} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{h}{h(\sqrt{x + h} + \sqrt{x})} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{1}{\sqrt{x + h} + \sqrt{x}} \\ &= \frac{1}{\sqrt{x + 0} + \sqrt{x}} \\ &= \frac{1}{2\sqrt{x}} \\ \end{aligned}
f′(x)=h→0limhf(x+h)−f(x)=h→0limhx+h−x=h→0limhx+h−x×x+h+xx+h+x=h→0limh(x+h+x)(x+h)−x=h→0limh(x+h+x)h=h→0limx+h+x1=x+0+x1=2x1
d
d
x
(
x
)
=
1
2
x
\begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \\ \end{aligned}
dxd(x)=2x1
1.3. We want to differentiate f ( x ) = x + x 2 f(x) = \sqrt{x} + x^{2} f(x)=x+x2 with respect to x x x
对 f ( x ) = x + x 2 f(x) = \sqrt{x} + x^{2} f(x)=x+x2 关于 x x x 求导
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h + ( x + h ) 2 ) − ( x + x 2 ) h = lim h → 0 x + h − x + ( x + h ) 2 − x 2 h = lim h → 0 x + h − x + 2 x h + h 2 h = lim h → 0 ( x + h − x h + 2 x h + h 2 h ) = lim h → 0 ( x + h − x h + 2 x + h ) = lim h → 0 x + h − x h + lim h → 0 ( 2 x + h ) = 1 2 x + lim h → 0 ( 2 x + h ) = 1 2 x + ( 2 x + 0 ) = 1 2 x + 2 x \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(\sqrt{x + h} + (x + h)^2) - (\sqrt{x} + x^2)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x} + (x + h)^2 - x^2}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x} + 2xh + h^2}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}(\frac{\sqrt{x + h} - \sqrt{x}}{h} + \frac{2xh + h^2}{h}) \\ &= \underset{h \rightarrow 0}{\text{lim}}(\frac{\sqrt{x + h} - \sqrt{x}}{h} + {2x + h}) \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} + \underset{h \rightarrow 0}{\text{lim}}({2x + h}) \\ &= \frac{1}{2\sqrt{x}} + \underset{h \rightarrow 0}{\text{lim}}({2x + h}) \\ &= \frac{1}{2\sqrt{x}} + ({2x + 0}) \\ &= \frac{1}{2\sqrt{x}} + 2x \\ \end{aligned} f′(x)=h→0limhf(x+h)−f(x)=h→0limh(x+h+(x+h)2)−(x+x2)=h→0limhx+h−x+(x+h)2−x2=h→0limhx+h−x+2xh+h2=h→0lim(hx+h−x+h2xh+h2)=h→0lim(hx+h−x+2x+h)=h→0limhx+h−x+h→0lim(2x+h)=2x1+h→0lim(2x+h)=2x1+(2x+0)=2x1+2x
1.4. We want to differentiate f ( x ) = x n f(x) = x^{n} f(x)=xn with respect to x x x, where n n n is some positive integer
对 f ( x ) = x n f(x) = x^{n} f(x)=xn 关于 x x x 求导,其中 n n n 是某个正整数
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) n − x n h \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h)^{n} - x^{n}}{h} \\ \end{aligned} f′(x)=h→0limhf(x+h)−f(x)=h→0limh(x+h)n−xn
( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) \end{aligned} (x+h)n=(x+h)(x+h)…(x+h)
If you take the term
x
x
x from each factor, there are
n
n
n of them, so you get one term
x
n
x^{n}
xn in the product.
如果从每一个因子中提取项
x
x
x,将会有
n
n
n 个
x
x
x,因而会在乘积中得到
x
n
x^{n}
xn 这一项。
( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) = x n + 含有因子 h 的项 \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) = x^{n} + 含有因子 \ h \ 的项 \end{aligned} (x+h)n=(x+h)(x+h)…(x+h)=xn+含有因子 h 的项
If you take the term
h
h
h from the first factor and
x
x
x from the others, then you have one
h
h
h and
(
n
−
1
)
(n - 1)
(n−1) copies of
x
x
x, so you get
h
x
n
−
1
hx^{n - 1}
hxn−1 when you multiply them all together.
如果从第一个因子中提取
h
h
h,然后从其他因子中提取
x
x
x,那样就会有一个
h
h
h 和
(
n
−
1
)
(n - 1)
(n−1) 个
x
x
x,因此当将它们都乘起来的时候会得到
h
x
n
−
1
hx^{n - 1}
hxn−1。还有其他的方法来选择一个
h
h
h 和其余的
x
x
x (可以从第二个因子里提取
h
h
h,然后从其他因子中提取
x
x
x;或者从第三个因子里提取
h
h
h,然后从其他因子中提取
x
x
x,如此等等)。
In fact, there are
n
n
n ways you could pick one
h
h
h and the rest
x
x
x, so you actually have
n
n
n copies of
h
x
n
−
1
hx^{n-1}
hxn−1. Together, this makes
n
h
x
n
−
1
nhx^{n-1}
nhxn−1.
事实上,有
n
n
n 种方法来选取一个
h
h
h 和其余的
x
x
x,因此实际上有
n
n
n 个
h
x
n
−
1
hx^{n - 1}
hxn−1 加在一起,会得到
n
h
x
n
−
1
nhx^{n - 1}
nhxn−1。
Every other term in the expansion has at least two copies of
h
h
h, so every other term has a factor of
h
2
h^2
h2.
在展开式中,每隔一项至少有两个
h
h
h,因此每隔一项就含有一个带
h
2
h^2
h2 的因子。
( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) = x n + n h x n − 1 + 含有因子 h 2 的项 \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) = x^{n} + nhx^{n - 1} + 含有因子 \ h^{2} \ 的项 \end{aligned} (x+h)n=(x+h)(x+h)…(x+h)=xn+nhxn−1+含有因子 h2 的项
Term is just a polynomial in
x
x
x and
h
h
h.
项是含有
x
x
x 和
h
h
h 的多项式。
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) n − x n h = lim h → 0 x n + n h x n − 1 + h 2 × ( term ) − x n h = lim h → 0 n h x n − 1 + h 2 × ( term ) h = lim h → 0 ( n x n − 1 + h × ( term ) ) = n x n − 1 + 0 × ( term ) = n x n − 1 \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h)^{n} - x^{n}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{x^{n} + nhx^{n - 1} + h^{2} \times (\text{term}) - x^{n}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{nhx^{n - 1} + h^{2} \times (\text{term})}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}({nx^{n - 1} + h \times (\text{term})} )\\ &= nx^{n - 1} + 0 \times (\text{term}) \\ &= nx^{n - 1} \\ \end{aligned} f′(x)=h→0limhf(x+h)−f(x)=h→0limh(x+h)n−xn=h→0limhxn+nhxn−1+h2×(term)−xn=h→0limhnhxn−1+h2×(term)=h→0lim(nxn−1+h×(term))=nxn−1+0×(term)=nxn−1
The x n x^{n} xn terms cancel, and then we can cancel out a factor of h h h.
d d x ( x n ) = n x n − 1 when n is a positive integer \begin{aligned} \frac{\text{d}}{\text{d}x}(x^{n}) = nx^{n - 1} \ \text{when} \ n \ \text{is a positive integer} \end{aligned} dxd(xn)=nxn−1 when n is a positive integer
1.5. We want to differentiate f ( x ) = x a f(x) = x^{a} f(x)=xa with respect to x x x, when a a a is any real number at all
对 f ( x ) = x a f(x) = x^{a} f(x)=xa 关于 x x x 求导,其中 a a a 是任意实数
In words, you are simply taking the power, putting a copy of it out front as the coefficient, and then knocking the power down by 1
.
提取次数,将它放在最前面作系数,然后再将次数减少 1
。
d
d
x
(
x
a
)
=
a
x
a
−
1
when
a
is any real number at all
\begin{aligned} \frac{\text{d}}{\text{d}x}(x^{a}) = ax^{a - 1} \ \text{when} \ a \ \text{ is any real number at all} \end{aligned}
dxd(xa)=axa−1 when a is any real number at all
When
a
=
0
a = 0
a=0, then
x
a
x^a
xa is the constant function 1
. The derivative is then
0
x
−
1
0x^{-1}
0x−1, which is just 0
.
当
a
=
0
a = 0
a=0 时,
x
a
x^a
xa 是常数函数 1
,其导数是
0
x
−
1
0x^{-1}
0x−1,结果是 0
。
如果
C
是常数,那么
d
d
x
(
C
)
=
0
。
\begin{aligned} 如果 \ C \ 是常数,那么 \frac{\text{d}}{\text{d}x}(C) = 0。 \end{aligned}
如果 C 是常数,那么dxd(C)=0。
If
a
=
1
a = 1
a=1, then
x
a
x^a
xa is just
x
x
x. According to the formula, the derivative
is
1
x
0
1x^0
1x0, which is the constant function 1
.
当
a
=
1
a = 1
a=1 时,
x
a
x^a
xa 是
x
x
x,其导数是
1
x
0
1x^{0}
1x0,也就是常数函数 1
。
d
d
x
(
x
)
=
1
\begin{aligned} \frac{\text{d}}{\text{d}x}(x) = 1 \end{aligned}
dxd(x)=1
When a = 2 a = 2 a=2, then we see that the derivative of x 2 x^2 x2 with respect to x x x is 2 x 1 2x^1 2x1, which is just 2 x 2x 2x.
When a = − 1 a = -1 a=−1, we can use our formula to see that the derivative of x − 1 x^{-1} x−1 is − 1 × x − 2 -1 \times x^{-2} −1×x−2. In fact, this just says that the derivative of 1 / x 1/x 1/x is − 1 / x 2 -1/x^{2} −1/x2.
d d x ( x ) = d d x ( x 1 / 2 ) = 1 2 x 1 / 2 − 1 = 1 2 x − 1 / 2 = 1 2 × 1 x 1 / 2 = 1 2 × 1 x = 1 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt{x}) &= \frac{\text{d}}{\text{d}x}(x^{1/2}) \\ &= \frac{1}{2}x^{1/2 - 1} \\ &= \frac{1}{2}x^{-1/2} \\ &= \frac{1}{2} \times \frac{1}{x^{1/2}} \\ &= \frac{1}{2} \times \frac{1}{\sqrt{x}} \\ &=\frac{1}{2\sqrt{x}} \\ \end{aligned} dxd(x)=dxd(x1/2)=21x1/2−1=21x−1/2=21×x1/21=21×x1=2x1
d d x ( x 3 ) = d d x ( x 1 / 3 ) = 1 3 x 1 / 3 − 1 = 1 3 x − 2 / 3 = 1 3 × 1 x 2 / 3 = 1 3 × 1 x 2 3 = 1 3 x 2 3 \begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt[3]{x}) &= \frac{\text{d}}{\text{d}x}(x^{1/3}) \\ &= \frac{1}{3}x^{1/3 - 1} \\ &= \frac{1}{3}x^{-2/3} \\ &= \frac{1}{3} \times \frac{1}{x^{2/3}} \\ &= \frac{1}{3} \times \frac{1}{\sqrt[3]{x^{2}}} \\ &=\frac{1}{3\sqrt[3]{x^{2}}} \\ \end{aligned} dxd(3x)=dxd(x1/3)=31x1/3−1=31x−2/3=31×x2/31=31×3x21=33x21
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] 普林斯顿微积分读本 (修订版), https://m.ituring.com.cn/book/1623