pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple/ ──(Sat,Nov30)─┘
pip install shapely -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install paddleocr -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install easyocr
import easyocr
import os
import cv2
import time
from paddleocr import PaddleOCR
def get_photo_paths(photos_folder_path):
return [ f"{photos_folder_path}{os.sep}{photo_name}" for photo_name in os.listdir(photos_folder_path) if ".PNG" in photo_name]
def preprocess_image(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
denoised = cv2.medianBlur(binary, 3)
return denoised
def image_cutting(image_path
,up_ratio=0.03
,down_ratio=0.13):
image = cv2.imread(image_path)
width = int(image.shape[1] * 1)
down = int(image.shape[0] * down_ratio)
up = int(image.shape[0] * up_ratio)
cropped_image = image[up:down, :width]
preprocessed_image = preprocess_image(cropped_image)
return preprocessed_image
def get_key_fields_from_easyorc(image,keyword=''):
res = Ereader.readtext(image)
texts = []
if keyword != '':
for fields in res:
boundaries = fields[0]
text = fields[1]
if keyword in text:
return {True:text}
else:
texts.append(text)
return {False:texts}
else:
text = res[0][1]
return text
def get_key_fields_from_PaddleOCR(image,keyword=''):
res = Preader.ocr(image, cls=True)[0]
texts = []
if keyword != '':
for fields in res:
boundaries = fields[0]
text = fields[1][0]
if keyword in text:
return {True:text}
else:
texts.append(text)
return {False:texts}
else:
text = res[0][1][0]
return {True:text}
def time_counter(begin_time, end_time):
runtime = round(end_time - begin_time)
hour = runtime // 3600
minute = (runtime - 3600 * hour) // 60
second = runtime - 3600 * hour - 60 * minute
return f'用时:{hour}小时{minute}分钟{second}秒'
def change_wechat_photo_name_logic(photos_folder_path
,keyword = '22级实习-'
,up_ratio=0.05
,down_ratio=0.13
,model_name = "paddleorc"):
if model_name == "paddleorc":
global Preader
Preader = PaddleOCR(use_angle_cls=True,det=False, lang="ch")
elif model_name == "easyorc":
global Ereader
Ereader = easyocr.Reader(['ch_sim','en'])
photo_paths = get_photo_paths(photos_folder_path)
m = len(photo_paths)
t = 0
start_time = time.time()
for photo_path in photo_paths:
start_time_of_each_step = time.time()
try:
preprocessed_image = image_cutting(photo_path,up_ratio,down_ratio)
if model_name == "easyorc":
wechat_name = get_key_fields_from_easyorc(preprocessed_image,keyword)
elif model_name == "paddleorc":
wechat_name = get_key_fields_from_PaddleOCR(preprocessed_image,keyword)
if keyword != "":
split_wechate_name = wechat_name[True].split('-')
friend_name = split_wechate_name[-1]
else:
friend_name = wechat_name[True]
new_photo_path = os.path.join(photos_folder_path,f"{friend_name}.PNG")
os.rename(photo_path,new_photo_path)
t += 1
end_time_of_each_step = time.time()
time_for_this_time = time_counter(start_time_of_each_step,end_time_of_each_step)
print(f"当前好友名为{friend_name},是第{t}个,完成{t/m*100}%,{time_for_this_time}")
except Exception as e:
print(f"\033[31m当前文件为:【{photo_path}】\n,错误:{e}\033[0m")
print(f"总计{time_counter(start_time,end_time_of_each_step)},完成{t}个")
if __name__ == '__main__':
photos_folder_path = "/Users/magu/Downloads/淮职课程准备/1就业材料/就业实习留存材料/回访截图/张晶实习回访(11月1日-11月30)"
change_wechat_photo_name_logic(photos_folder_path,keyword = '22级实习-',up_ratio=0.05,down_ratio=0.101)