当前位置: 首页 > article >正文

【机器学习】机器学习学习笔记 - 监督学习 - 多项式回归决策树回归 - 03

多项式回归

  • 解决线性回归的准备性不足问题(线性回归只能是直线,多项式回归引入多项式可以是曲线)
  • 通过对预测值进行多项式转换, 使得回归模型可以是非线性的
  • 多项式回归的优点是可以处理非线性的数据
  • 多项式回归的缺点是它对数据进行了多项式转换

加菲工具,免费pdf转word等 https://orcc.online

# 曲线多项式的次数设置为2
polynomial = PolynomialFeatures(degree=2)

# 多项式回归
poly_linear_model = linear_model.LinearRegression()
# 多项式参数
# 多项式转换结果
X_train_transformed = polynomial.fit_transform(X_train)
# 训练模型
poly_linear_model.fit(X_train_transformed, y_train)

# 多项式转换测试数据
X_test_transformed = polynomial.fit_transform(X_test)
# 通过转换的测试数据预测数据
y_test_poly_pred = poly_linear_model.predict(X_test_transformed)
print(y_test_poly_pred)

决策树回归

  • 集成学习(Ensemble Learning) 旨在通过组合多个基本模型(弱学习器)的预测创建一个强学习器(强学习器)
  • Boosting(提升) 和 Bagging(袋装) 都是集成学习的思想
  • Bagging(袋装) 原始数据集随机采样, 然后将采样的数据集分别训练多个决策树模型, 最后将这些决策树模型的预测结果进行投票(投票:分类, 回归:平均), 得到最终的预测结果
  • Boosting(提升) 通过迭代的方式, 训练多个决策树模型, 最后将这些决策树模型的预测结果进行加权平均, 得到最终的预测结果
  • bagging: 适用于高方差、低偏差的数据集 (random forest 随机森林)
  • boosting: 适用于高偏差、低方差的数据集 (AdaBoost 自适应增强)
  • 偏差: 预测结果的准确性
  • 方差: 预测结果的离散程度
决策树回归 decision tree regression
from sklearn.tree import DecisionTreeRegressor

# 训练模型
# 决策树回归
# max_depth 树的深度, 设定位4,防止任意深度过深,导致过拟合
dt_regressor = DecisionTreeRegressor(max_depth=4)
dt_regressor.fit(X_train, y_train)

y_pred_dt = dt_regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred_dt)
evs = explained_variance_score(y_test, y_pred_dt)
print("#### Decision Tree performance ####")
print("Mean squared error (均方误差/平均平方误差 (越小越好)) = ", round(mse, 2))
print("Explained variance score (解释方差分 (0-1) 1 接近表示解释能力越好) =", round(evs, 2))

# 决策树特征权重
def plot_feature_importances(feature_importances, title, feature_names):
    # 将重要性值标准化
    feature_importances = 100.0 * (feature_importances / max(feature_importances))
    # 将得分从高到低排序
    index_sorted = np.flipud(np.argsort(feature_importances))
    # 让X坐标轴上的标签居中显示
    pos = np.arange(index_sorted.shape[0]) + 0.5
    # 画条形图
    plt.figure()
    plt.bar(pos, feature_importances[index_sorted], align='center')
    print(pos, index_sorted, feature_importances)
    plt.xticks(pos, [feature_names[i] for i in index_sorted])
    plt.ylabel('Relative Importance')
    plt.title(title)
    plt.show()

# print(dt_regressor.feature_importances_)
# print(dt_regressor.feature_importances_)
plot_feature_importances(dt_regressor.feature_importances_, 'Decision Tree regressor', data_columns)

自适应决策树回归 adaboost regressor
from sklearn.ensemble import AdaBoostRegressor

# AdaBoost: adaptive boosting (自适应增强)
# n_estimators 基学习器的个数
ab_regressor = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=400, random_state=7)
ab_regressor.fit(X_train, y_train)

y_pred_ab = ab_regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred_ab)
evs = explained_variance_score(y_test, y_pred_ab)
print("#### AdaBoost performance ####")
print("Mean squared error (均方误差/平均平方误差 (越小越好)) = ", round(mse, 2))
print("Explained variance score (解释方差分 (0-1) 1 接近表示解释能力越好) =", round(evs, 2))

def plot_feature_importances(feature_importances, title, feature_names):
    # 将重要性值标准化
    feature_importances = 100.0 * (feature_importances / max(feature_importances))
    # 将得分从高到低排序
    index_sorted = np.flipud(np.argsort(feature_importances))
    # 让X坐标轴上的标签居中显示
    pos = np.arange(index_sorted.shape[0]) + 0.5
    # 画条形图
    plt.figure()
    plt.bar(pos, feature_importances[index_sorted], align='center')
    print(pos, index_sorted, feature_importances)
    plt.xticks(pos, [feature_names[i] for i in index_sorted])
    plt.ylabel('Relative Importance')
    plt.title(title)
    plt.show()

plot_feature_importances(ab_regressor.feature_importances_, 'AdaBoost regressor', data_columns)
随机森林回归 random forest regressor
from sklearn.ensemble import RandomForestRegressor

# 训练模型
# 随机森林回归
# 随机森林回归, n_estimators 决策树的个数, max_depth 决策树的深度, min_samples_split 决策树的最小样本数
rf_regressor = RandomForestRegressor(n_estimators=1000, max_depth=4, min_samples_split=2)
rf_regressor.fit(X_train, y_train)

y_pred_rf = rf_regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred_rf)
evs = explained_variance_score(y_test, y_pred_rf)
print("#### Random Forest Regressor performance ####")
print("Mean squared error (均方误差/平均平方误差 (越小越好)) = ", round(mse, 2))
print("Explained variance score (解释方差分 (0-1) 1 接近表示解释能力越好) =", round(evs, 2))

def plot_feature_importances(feature_importances, title, feature_names):
    # 将重要性值标准化
    feature_importances = 100.0 * (feature_importances / max(feature_importances))
    # 将得分从高到低排序
    index_sorted = np.flipud(np.argsort(feature_importances))
    # 让X坐标轴上的标签居中显示
    pos = np.arange(index_sorted.shape[0]) + 0.5
    # 画条形图
    plt.figure()
    plt.bar(pos, feature_importances[index_sorted], align='center')
    print(pos, index_sorted, feature_importances)
    plt.xticks(pos, [feature_names[i] for i in index_sorted])
    plt.ylabel('Relative Importance')
    plt.title(title)
    plt.show()

# print(dt_regressor.feature_importances_)
# print(dt_regressor.feature_importances_)
plot_feature_importances(rf_regressor.feature_importances_, 'random forest regressor', data_columns)

IT免费在线工具网 https://orcc.online


http://www.kler.cn/a/419191.html

相关文章:

  • 记录QT5迁移到QT6.8上的一些问题
  • Java全栈:超市购物系统实现
  • Verilog的线与类型与实例化模块
  • 云计算的发展历史与未来展望
  • 《装甲车内的气体卫士:上海松柏 S-M4 智能型气体传感器详解》
  • Vue中实现函数限流:节流和防抖
  • 【拥抱AI】如何查看Milvus的使用情况?
  • redis实战:集群的session问题
  • 数据结构之二叉树详解:从原理到实现
  • Ubuntu通过脚本启动多个可执行文件
  • 缓存之Redis介绍
  • 小程序-基于java+SpringBoot+Vue的校园二手交易小程序设计与实现
  • 安装SQL Server 2022提示需要Microsoft .NET Framework 4.7.2 或更高版本
  • Java Web环境下处理MySQL多线程高并发
  • 【论文笔记】Leveraging the Power of MLLMs for Gloss-Free Sign Language Translation
  • 网络设备配置指南:交换机、路由器与防火墙的基础配置与管理
  • Scala的练习题
  • C++初阶(十七)--STL--stack和queue详解及使用
  • IDEA Maven 打包找不到程序包错误或找不到符号,报错“程序包不存在“
  • 如何用Excel做数据可视化自动化报表?
  • 泷羽sec-shell(7)for循环与while循环 学习笔记
  • Linux下的三种 IO 复用
  • 文件比较和文件流
  • 大数据治理的介绍与认识
  • LeetCode题解:30.串联所有单词的子串【Python题解超详细,KMP搜索、滑动窗口法】,知识拓展:Python中的排列组合
  • 贝叶斯统计:高斯分布均值μ的后验分布推导