当前位置: 首页 > article >正文

nlp培训重点

SGD梯度下降公式:

\theta _{t+1}=\theta _{t} - lr * \frac{\partial f}{\partial \theta _{t}}

当梯度大于0时,\theta _{t}变小,往左边找梯度接近0的值。

当梯度小于0时,\theta _{t}减去一个负数会变大,往右边找梯度接近0的值,此时梯度从负数到0上升

#coding:utf8

import torch
import torch.nn as nn
import numpy as np
import copy

"""
基于pytorch的网络编写
手动实现梯度计算和反向传播
加入激活函数
"""

class TorchModel(nn.Module):
    def __init__(self, hidden_size):
        super(TorchModel, self).__init__()
        self.layer = nn.Linear(hidden_size, hidden_size, bias=False) #w = hidden_size * hidden_size  wx+b -> wx
        self.activation = torch.sigmoid
        self.loss = nn.functional.mse_loss  #loss采用均方差损失

    #当输入真实标签,返回loss值;无真实标签,返回预测值
    def forward(self, x, y=None):
        y_pred = self.layer(x)
        y_pred = self.activation(y_pred)
        if y is not None:
            return self.loss(y_pred, y)
        else:
            return y_pred


#自定义模型,接受一个参数矩阵作为入参
class DiyModel:
    def __init__(self, weight):
        self.weight = weight

    def forward(self, x, y=None):
        x = np.dot(x, self.weight.T)
        y_pred = self.diy_sigmoid(x)
        if y is not None:
            return self.diy_mse_loss(y_pred, y)
        else:
            return y_pred

    #sigmoid
    def diy_sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

    #手动实现mse,均方差loss
    def diy_mse_loss(self, y_pred, y_true):
        return np.sum(np.square(y_pred - y_true)) / len(y_pred)

    #手动实现梯度计算
    def calculate_grad(self, y_pred, y_true, x):
        #前向过程
        # wx = np.dot(self.weight, x)
        # sigmoid_wx = self.diy_sigmoid(wx)
        # loss = self.diy_mse_loss(sigmoid_wx, y_true)
        #反向过程
        # 均方差函数 (y_pred - y_true) ^ 2 / n 的导数 = 2 * (y_pred - y_true) / n , 结果为2维向量
        grad_mse = 2/len(x) * (y_pred - y_true)
        # sigmoid函数 y = 1/(1+e^(-x)) 的导数 = y * (1 - y), 结果为2维向量
        grad_sigmoid = y_pred * (1 - y_pred)
        # wx矩阵运算,见ppt拆解, wx = [w11*x0 + w21*x1, w12*x0 + w22*x1]
        #导数链式相乘
        grad_w11 = grad_mse[0] * grad_sigmoid[0] * x[0]
        grad_w12 = grad_mse[1] * grad_sigmoid[1] * x[0]
        grad_w21 = grad_mse[0] * grad_sigmoid[0] * x[1]
        grad_w22 = grad_mse[1] * grad_sigmoid[1] * x[1]
        grad = np.array([[grad_w11, grad_w12],
                         [grad_w21, grad_w22]])
        #由于pytorch存储做了转置,输出时也做转置处理
        return grad.T

#梯度更新
def diy_sgd(grad, weight, learning_rate):
    return weight - learning_rate * grad

#adam梯度更新
def diy_adam(grad, weight):
    #参数应当放在外面,此处为保持后方代码整洁简单实现一步
    alpha = 1e-3  #学习率
    beta1 = 0.9   #超参数
    beta2 = 0.999 #超参数
    eps = 1e-8    #超参数
    t = 0         #初始化
    mt = 0        #初始化
    vt = 0        #初始化
    #开始计算
    t = t + 1
    gt = grad
    mt = beta1 * mt + (1 - beta1) * gt
    vt = beta2 * vt + (1 - beta2) * gt ** 2
    mth = mt / (1 - beta1 ** t)
    vth = vt / (1 - beta2 ** t)
    weight = weight - (alpha * mth/ (np.sqrt(vth) + eps))
    return weight

x = np.array([-0.5, 0.1])  #输入
y = np.array([0.1, 0.2])  #预期输出

#torch实验
torch_model = TorchModel(2)
torch_model_w = torch_model.state_dict()["layer.weight"]
print(torch_model_w, "初始化权重")
numpy_model_w = copy.deepcopy(torch_model_w.numpy())
#numpy array -> torch tensor, unsqueeze的目的是增加一个batchsize维度
torch_x = torch.from_numpy(x).float().unsqueeze(0) 
torch_y = torch.from_numpy(y).float().unsqueeze(0)
#torch的前向计算过程,得到loss
torch_loss = torch_model(torch_x, torch_y)
print("torch模型计算loss:", torch_loss)
# #手动实现loss计算
diy_model = DiyModel(numpy_model_w)
diy_loss = diy_model.forward(x, y)
print("diy模型计算loss:", diy_loss)




# # #设定优化器
learning_rate = 0.1
# optimizer = torch.optim.SGD(torch_model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(torch_model.parameters())
# optimizer.zero_grad()
# #
# # #pytorch的反向传播操作
torch_loss.backward()
print(torch_model.layer.weight.grad, "torch 计算梯度")  #查看某层权重的梯度

# # #手动实现反向传播
grad = diy_model.calculate_grad(diy_model.forward(x), y, x)
print(grad, "diy 计算梯度")
# #
# #torch梯度更新
optimizer.step()
# # #查看更新后权重
update_torch_model_w = torch_model.state_dict()["layer.weight"]
print(update_torch_model_w, "torch更新后权重")
# #
# # #手动梯度更新
# diy_update_w = diy_sgd(grad, numpy_model_w, learning_rate)
diy_update_w = diy_adam(grad, numpy_model_w)
print(diy_update_w, "diy更新权重")


http://www.kler.cn/a/419812.html

相关文章:

  • 攻防世界-fileclude-文件包含
  • http(请求方法,状态码,Cookie与)
  • Lumos学习王佩丰Excel第十九讲:Indirect函数
  • CentOS7:MySQL 8.0.36升级到8.0.40
  • 【网络】协议与网络传输
  • Linux-虚拟环境
  • 海外centos服务器如何更换yum镜像源
  • 07《缓存》计算机组成与体系结构 系列课
  • docker 怎么启动nginx
  • 【C语言】结构体(二)
  • thinkphp自定义分页组件
  • 【Leetcode】26.删除有序数组中的重复项
  • Centos7安装MySQL8.0详细教程(压缩包安装方式)
  • mac终端自定义命令打开vscode
  • kube-proxy的iptables工作模式分析
  • 如何使用Python进行下载对应的视频地址
  • Python学习第十五天--魔术方法
  • Kong API Gateway 深度解析与实战指南
  • 【Linux内核】ashmem pin/unpin
  • Python毕业设计选题:基于django+vue的校园影院售票系统
  • CasaOS个人云存储系统使用Gopeed打造你的私人云端下载中心
  • Spring Boot自定义启动banner
  • 基于深度学习的甲状腺结节影像自动化诊断系统(PyQt5界面+数据集+训练代码)
  • 在 Ubuntu 使用 fonts-noto-cjk 设置 Matplotlib 支持中文的完整教程
  • Makefile 入门指南:构建自动化编译流程
  • java 反射 详解