当前位置: 首页 > article >正文

机器学习:机器学习项目的完整周期

建立一个有价值的机器学习系统时,需要考虑和计划哪些步骤?

以语音识别为例演示机器学习项目的全周期:机器学习项目的第一步是对项目进行范围划分,即决定什么是项目和你想做什么,然后是收集数据,所以决定需要什么数据来训练你的机器学习系统,并为数据获取标签,这就是数据收集,在进行初始数据收集后,就可以开始训练模型,所以在这里,将训练一个语音识别系统,并进行错误分析,并迭代改进模型进行误差分析或进行偏差方差分析,决定是否要收集更多的数据或者收集更多特定类型的数据,错误分析是为了提高学习算法的性能,重复这个过程,从训练模型到误差分析。收集更多数据,直到最终认为模型足够好,然后在生产环境中部署,让用户可以使用它,当部署一个系统时,还希望确保继续监视系统的性能,并维护系统以防止性能变差,使它的性能恢复,有时并不像希望的那样有效,所以再次进行训练再次改进它,甚至获取更多的数据。

在训练了一个高性能的机器学习模型后,部署模型的一种常见方法是使用机器学习模型,在一个服务器中实现,将调用一个推理服务器,它的工作是把你的机器学习模型(你训练的模型)做出预测,一个推理服务器,它让模型根据输入反复做出预测,所以这是一个常见的模式,取决于实现的应用程序。需要根据所需的应用规模来决定使用什么样的软件工程,推理服务器能够做出可靠有效的预测,对于某些应用程序,部署过程可能需要一定数量的软件工程,如果只是在笔记本电脑或者一两个服务上运行它,也许不需要太多的软件工程,机器学习中有一个不断增长的领域叫做MLOPS,这代表机器学习操作,这是指构建、部署和维护机器学习系统,做所有这些事情,以确保机器学习模型是可靠的,并有良好的损耗监测,然后对模型进行适当的更新。


http://www.kler.cn/a/420321.html

相关文章:

  • 【Spring】介绍一下 Spring 的 xml 标签以及 Bean 的常用配置
  • 单片机学习笔记 12. 定时/计数器_定时
  • 三维测量与建模笔记 - 5.3 光束法平差(Bundle Adjustment)
  • 数据结构实训——查找
  • 十、软件设计架构-微服务-服务调用Dubbo
  • 浏览器渲染原理
  • VS Code配置Lua调试环境
  • 【Verilog】实验三 数码管实验
  • 使用 Pytorch 构建 Vanilla GAN
  • Jenkins环境搭建及简单介绍
  • 十、软件设计架构-微服务-服务调用Dubbo
  • Ubuntu24.04初始化教程(包含基础优化、ros2)
  • 高效处理 iOS 应用中的大规模礼物数据:以直播项目为例(1-礼物池)
  • Ajax:回忆与节点
  • 使用R语言优雅的获取任意区域的POI,道路,河流等数据
  • StarRocks存算分离在得物的降本增效实践
  • 基于Pyside6开发一个通用的在线升级工具
  • Liunx系统编程——shell的简单实现
  • HO-VMD-TCN西储大学轴承故障诊断
  • 分治的思想(力扣965、力扣144、牛客KY11)
  • SQL进阶技巧:非等值连接--单向近距离匹配
  • python 的while break continue 嵌套循环
  • 人工智能-卷积神经网络(学习向)
  • 如何搭建JMeter分布式集群环境来进行性能测试
  • 【N 卡 掉驱动 Driver 】NVML ERROR: Driver Not Loaded
  • 做异端中的异端 -- Emacs裸奔之路3: 上古神键Hyper