当前位置: 首页 > article >正文

记录学习《手动学习深度学习》这本书的笔记(二)

这几天看完了第5章:深度学习计算,做个总结。

第五章:深度学习计算

5.1 层和块

介绍了神经网络的层和块。

层:①接收一组输入②生成相应输出③具有一组可调整参数

块:描述单个或多个层,或多个快,甚至整个模型。从编程角度,块由类(class)表示,其中包含前向传播函数和一些必要的参数。

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()

X = np.random.uniform(size=(2, 20))
net(X)

这样就实现了一个块,包含一个带激活函数的含256个神经元的全连接层和一个10个神经元的全连接层。

net(X)在这里相当于net.__call__(X)(默认调用函数),作用是将X前向传播得出预测的y。

Class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256) 
        self.out = nn.Linnear(256, 10)
        # 括号里两个参数分别代表输入维度和输出维度
    
    def forward(self, X):
        return self.out(F.relu(self.hidden(X)))

net = MLP()
net(X)

这样就手动实现了一个块。

nn.Module的默认调用函数是forward,所以net(X)运行的其实是net.forward(X)。

然后再来实现一个可以自定义的块:

class mySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            self._modules[str(idx)] = module

    def forward(self, X):
        for block in self._modules.values():
            X = block(X)
        return X

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

5.2 参数管理

这里介绍了一些关于神经网络参数的知识。

比如我们可以用函数访问参数:

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8,1))

print(net[2].state_dict())

state_dict()用于获取模型参数和缓冲区(如权重和偏置)的字典,访问第三层的weight和bias。

print(net[2].bias)
print(net[2].bias.data)

输出偏置和参数类的实例。

还可以一次性输出模型全部参数,还有另一种输出模型参数的方式,还可以输出嵌套块的参数。

还有参数绑定:

shared = nn.Linear(8, 8)
net = Sequential(shared, nn.ReLU(), shared)

这时改变一个,另一个也会变。

5.5 读写文件

可以将张量加载或保存,也可以将模型加载或保存。

5.6 GPU

计算机中有CPU和GPU两种处理器(设备),默认情况下变量和计算都保存在CPU中,CPU和GPU可以用torch.device('cpu')和torch.device('cuda')表示。

CPU代表所有物理CPU和内存,GPU只代表一个卡和显存。

def try_gpu(i = 0):
    if torch.cuda.device_count() >= i+1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

可以自行设置将张量存储在gpu中,比如:

X = torch.ones(2, 3, device = try_gpu(0))

不同gpu上张量无法互通,需要进行运算可以将张量复制到另一个gpu上。

Z = X.cuda(1)

深度学习框架要求计算的输入数据都在同一设备上,无论是cpu还是gpu。


http://www.kler.cn/a/420594.html

相关文章:

  • 【机器学习】CatBoost 模型实践:回归与分类的全流程解析
  • L1-049 天梯赛座位分配
  • Leetcode62. 不同路径(HOT100)
  • BeanUtils:Java Bean工具类详解
  • C—操作符易错点
  • Ubuntu WiFi检测
  • Oracle ASM存储学习和相关视图
  • 基于“开源 2+1 链动 O2O 商城小程序”的门店拉新策略与流程设计
  • 基于单片机的四位数码管检测有毒气体
  • 基于Java Springboot个人财务APP且微信小程序
  • 【Spring源码核心篇-06】spring中事务的底层实现与执行流程
  • vue.js学习(day 13)
  • C基础练习题
  • Ubuntu22.04上kdump和crash的使用
  • D83【python 接口自动化学习】- pytest基础用法
  • 一键生成数据库对应的所有DataX的json文件
  • mvc基础及搭建一个静态网站
  • Ubantu系统docker运行成功拉取失败【成功解决】
  • GateWay使用手册
  • 清理Linux/CentOS7根目录的思路
  • Vue3 脚手架扩展
  • Proteus8.17下载安装教程
  • MySQL安装部署
  • IP划分(笔记)
  • 对于Oracle来说,土地管理是非核心域吗
  • 【机器学习】机器学习的基本分类-监督学习-逻辑回归-对数似然损失函数(Log-Likelihood Loss Function)