【Android】View工作原理
View
是Android在视觉上的呈现在界面上Android提供了一套GUI库,里面有很多控件,但是很多时候我们并不满足于系统提供的控件,因为这样就意味这应用界面的同类化比较严重。那么怎么才能做出与众不同的效果呢?答案是自定义View,也可以叫自定义控件,通过自定义View我们可以实现各种五花八门的效果。
除了 View
的三大流程以外, View
常见的回调方法也是需要熟练掌握的,比如构造方法、onAttach、onViVisibilityChanged、onDetach等。
ViewRoot和DecorView
ViewRoot对应于ViewRootImpl类,它是连接WindowManager和DecorView的纽带,View的三大流程均是通过ViewRoot来完成的。
在ActivityThread中,当Activity对象被创建完毕后,会将DecorView添加到Window中,同时会创建ViewRootImpl对象,并将ViewRootImpl对象和DecorView建立关联。
View的绘制流程是从ViewRoot的performTraversals方法开始的,它经过measure、layout和draw三个过程。measure用来测量View的宽和高,layout用来确定View在父容器中的放置位置,而draw则负责将View绘制在屏幕上。
performTraversals会依次调用performMeasure、performLayout和performDraw三个方法,这三个方法分会别完成顶级View的measure、layout和draw,在performMeasure中会去调用measure方法,measure中又会去调用onMeasure方法,然后在onMeasure方法中会对所有的子元素进行measure过程,这样就完成了一次measure过程。然后子元素又会重复父容器的measure过程,最后完成整个View树的遍历。
另外两个的传递流程和performMeasure是类似的,唯一不同的是,performDraw的传递过程是在draw方法中通过dispatchDraw来实现的。
measure过程决定了View的宽/高,Measure完成以后,可以通过getMeasuredWidth和getMeasuredHeight方法来获取到View测量后的宽/高;Layout过程决定了View的四个顶点的坐标和实际的View的宽/高,完成以后,可以通过getTop、getBottom、getLeft和getRight来拿到View的四个顶点的位置,并可以通过getWidth和getHeight方法来拿到View的最终宽/高;Draw过程决定了View的显示,只有draw方法完成以后View的内容才能呈现在屏幕上。
理解MeasureSpec
MeasureSpec
MeasureSpec
是一个用于测量视图大小的概念,它通常与 View
和 ViewGroup
的测量过程密切相关。MeasureSpec
通过指定一个视图的宽度和高度模式以及实际大小,来控制视图的布局过程。
在测量过程中,系统会将View的LayoutParams根据父容器所施加的规则转换成对应的MeasureSpec,然后再根据这个measureSpec来测量出View的宽/高。
public static class MeasureSpec {
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
@IntDef({UNSPECIFIED, EXACTLY, AT_MOST})
@Retention(RetentionPolicy.SOURCE)
public @interface MeasureSpecMode {}
public static final int UNSPECIFIED = 0 << MODE_SHIFT;
public static final int EXACTLY = 1 << MODE_SHIFT;
public static final int AT_MOST = 2 << MODE_SHIFT;
public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << View.MeasureSpec.MODE_SHIFT) - 1) int size,
@MeasureSpecMode int mode) {
if (sUseBrokenMakeMeasureSpec) {
return size + mode;
} else {
return (size & ~MODE_MASK) | (mode & MODE_MASK);
}
}
@UnsupportedAppUsage
public static int makeSafeMeasureSpec(int size, int mode) {
if (sUseZeroUnspecifiedMeasureSpec && mode == UNSPECIFIED) {
return 0;
}
return makeMeasureSpec(size, mode);
}
@MeasureSpecMode
public static int getMode(int measureSpec) {
//noinspection ResourceType
return (measureSpec & MODE_MASK);
}
public static int getSize(int measureSpec) {
return (measureSpec & ~MODE_MASK);
}
static int adjust(int measureSpec, int delta) {
final int mode = getMode(measureSpec);
int size = getSize(measureSpec);
if (mode == UNSPECIFIED) {
// No need to adjust size for UNSPECIFIED mode.
return makeMeasureSpec(size, UNSPECIFIED);
}
size += delta;
if (size < 0) {
Log.e(VIEW_LOG_TAG, "MeasureSpec.adjust: new size would be negative! (" + size +
") spec: " + toString(measureSpec) + " delta: " + delta);
size = 0;
}
return makeMeasureSpec(size, mode);
}
public static String toString(int measureSpec) {
int mode = getMode(measureSpec);
int size = getSize(measureSpec);
StringBuilder sb = new StringBuilder("MeasureSpec: ");
if (mode == UNSPECIFIED)
sb.append("UNSPECIFIED ");
else if (mode == EXACTLY)
sb.append("EXACTLY ");
else if (mode == AT_MOST)
sb.append("AT_MOST ");
else
sb.append(mode).append(" ");
sb.append(size);
return sb.toString();
}
}
MeasureSpec通过将SpecMode和SpecSize打包成一个int值来避免过多的对象内存分配,为了方便操作,其提供了打包和解包方法。
SpecMode和SpecSize也是一个int值,一组SpecMode和SpecSize可以打包为一个MeasureSpec,而一个MeasureSpec可以通过解包的形式来得出其原始的SpecMode和SpecSize。
SpecMode
SpecMode
是 MeasureSpec
中的一个概念,用来描述测量时的约束类型。在 Android 中,MeasureSpec
被用来决定视图的宽度和高度,而 SpecMode
就是 MeasureSpec
的模式部分,它定义了视图的大小如何受到父视图的影响。
SpecMode
可以取以下三种值:
MeasureSpec.EXACTLY
-
说明:表示父视图已经为子视图指定了一个精确的尺寸,子视图必须严格遵循这个尺寸。
-
使用场景:当父视图为子视图设定了明确的尺寸时,通常是通过
match_parent
或者指定固定尺寸来实现的。在这种模式下,子视图无法改变尺寸。 -
举例:
<TextView android:layout_width="200dp" android:layout_height="50dp"/>
这里的宽度和高度会被视为 EXACTLY模式,子视图 TextView 必须使用指定的 200dp 和 50dp 尺寸。
MeasureSpec.AT_MOST
-
说明:表示父视图指定了一个最大尺寸,子视图可以根据自身内容来确定尺寸,但不能超过父视图给定的最大尺寸。
-
使用场景:这种模式通常出现在
wrap_content
的情况下,父视图给定了一个最大值,而子视图的实际大小是根据内容决定的,但不会超过最大值。 -
举例:
<TextView android:layout_width="wrap_content" android:layout_height="50dp"/>
这里TextView 的宽度是 wrap_content,因此它会根据内容来决定宽度,但高度被固定为 50dp。
MeasureSpec.UNSPECIFIED
-
说明:表示父视图没有为子视图的尺寸设置任何限制,子视图可以根据自己的需求来决定尺寸,通常不受任何约束。
-
使用场景:这种模式通常用于
ListView
或GridView
中的子项布局,它们的父视图允许子视图自适应尺寸。 -
举例:
<LinearLayout android:layout_width="wrap_content" android:layout_height="wrap_content"> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"/> </LinearLayout>
在这种情况下,LinearLayout的宽度和高度都是 wrap_content,父视图不会给 TextView 设置具体尺寸,TextView会根据内容自适应。
MeasureSpec和LayoutParams对应关系
系统内部是通过MeasureSpec来进行View的测量,但是正常情况下我们使用View指定MeasureSpec,尽管如此,但是我们可以给View设置LayoutParams 。
在View测量的时候,系统会将LayoutParams在父容器的约束下转换成对应的MeasureSpec,然后再根据这个MeasureSpec来确定View测量后的宽/高。
LayoutParams需要和父容器一起才能决定View的MeasureSpec,从而进一步决定View的宽/高。
对于DecorView,其MeasureSpec由窗口的尺寸和其自身的LayoutParams来共同确定;对于普通View,其MeasureSpec由父容器的MeasureSpec和自身的LayoutParams来共同决定。
在视图测量过程中,LayoutParams
主要影响 MeasureSpec
中的模式。例如:
- 如果
LayoutParams
的宽度和高度被设置为MATCH_PARENT
,则对应的MeasureSpec
模式通常会是EXACTLY
,并且MeasureSpec
中的尺寸会是父容器的尺寸。 - 如果
LayoutParams
的宽度和高度被设置为WRAP_CONTENT
,则对应的MeasureSpec
模式通常会是AT_MOST
,并且MeasureSpec
中的尺寸会是父容器可用的最大空间。 - 如果
LayoutParams
中的宽高是某个固定值(例如dp
),则对应的MeasureSpec
模式通常会是EXACTLY
,并且MeasureSpec
中的尺寸会是该固定值。
LayoutParams
提供了视图布局的一些基本参数,而 MeasureSpec
是视图测量过程中实际计算和传递尺寸的工具。
- LayoutParams.MATCH_PARENT:精确模式,大小就是窗口的大小;
- LayoutParams.WRAP_CONTENT:最大模式,大小不定,但是不能超过窗口的大小;
- 固定大小(比如100dp):精确模式,大小为LayoutParams中指定的大小。
对于普通View来说,View的measure过程由ViewGroup传递而来:
protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed) {
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
+ widthUsed, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
+ heightUsed, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
该方法会对子元素进行measure,在调用子元素的measure之前会先通过**getChildMeasureSpec()**得到子元素的MeasureSpec。
可以再看一下ViewGroup的**getChildMeasureSpec()**方法:
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
int specMode = MeasureSpec.getMode(spec);
int specSize = MeasureSpec.getSize(spec);
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode) {
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0) {
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size. So be it.
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0) {
// Child wants a specific size... so be it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0) {
// Child wants a specific size... let them have it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size... find out how big it should
// be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size.... find out how
// big it should be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
}
break;
}
//noinspection ResourceType
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
主要作用是根据父容器的MeasureSpec同时结合View本身的LayoutParams来确定子元素的MeasureSpec。
参数中的padding是指父容器中已占用的空间大小,因此子元素可用的大小为父容器的尺寸减去padding。
View的工作流程
View的工作流程主要是指measure、layout、draw这三大流程。
measure过程
View的measure过程
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
上面是View的onMeasure方法,setMeasuredDimension方法会设置View宽/高的测量值,因此我们只需要看getDefaultSize这个方法即可:
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
getDefaultSize返回的大小就是measureSpec中的specSize,而这个specSize就是View测量后的大小。
UNSPECIFIED这种情况,一般用于系统内部的测量过程。
这种情况下,View的大小为getDefaultSize的第一个参数size,即宽/高分别为getSuggestedMinimumWidth和getSuggestedMinimumHeight这两个方法的返回值:
protected int getSuggestedMinimumWidth() {
return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
}
protected int getSuggestedMinimumHeight() {
return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight());
}
从getSuggestedMinimumWidth的代码可以看出,如果View没有设置背景,那么View的宽度为mMinWidth。而 mMinWidth 对 应 于
android:minWidth这个属性所指定的值,因此View的宽度即为android:minWidth属性所指定的值。如果View指定了背景,则View的宽度为max。
我们看一下Drawable的getMinimumWidth方法:
public int getMinimumHeight() {
final int intrinsicHeight = getIntrinsicHeight();
return intrinsicHeight > 0 ? intrinsicHeight : 0;
}
getMinimumWidth返回的就是Drawable的原始宽度,前提是这个Drawable有原始宽度,否则就返回0。
ViewGroup的measure过程
ViewGroup除了完成自己的measure过程以外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个过程。
ViewGroup提供了一个叫measureChildren的方法:
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
final int size = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < size; ++i) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
measureChild(child, widthMeasureSpec, heightMeasureSpec);
}
}
}
ViewGroup在measure时,会对每一个子元素进行measure。
里面的measureChild方法:
protected void measureChild(View child, int parentWidthMeasureSpec,
int parentHeightMeasureSpec) {
final LayoutParams lp = child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
思想就是取出子元素的LayoutParams,然后再通过getChildMeasureSpec来创建子元素的MeasureSpec,接着将MeasureSpec直接传递给View的measure方法来进行测量。
layout过程
Layout的作用是ViewGroup用来确定子元素的位置,当ViewGroup的位置被确定后,它在onLayout中会遍历所有的子元素并调用其layout方法,在layout方法中onLayout方法又会被调用。
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
if (isTraversalTracingEnabled()) {
Trace.beginSection(mTracingStrings.onMeasureBeforeLayout);
}
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
if (isTraversalTracingEnabled()) {
Trace.endSection();
}
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
if (isTraversalTracingEnabled()) {
Trace.beginSection(mTracingStrings.onLayout);
}
onLayout(changed, l, t, r, b);
if (isTraversalTracingEnabled()) {
Trace.endSection();
}
if (shouldDrawRoundScrollbar()) {
if(mRoundScrollbarRenderer == null) {
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
}
} else {
mRoundScrollbarRenderer = null;
}
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
final boolean wasLayoutValid = isLayoutValid();
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
if (!wasLayoutValid && isFocused()) {
mPrivateFlags &= ~PFLAG_WANTS_FOCUS;
if (canTakeFocus()) {
// We have a robust focus, so parents should no longer be wanting focus.
clearParentsWantFocus();
} else if (getViewRootImpl() == null || !getViewRootImpl().isInLayout()) {
// This is a weird case. Most-likely the user, rather than ViewRootImpl, called
// layout. In this case, there's no guarantee that parent layouts will be evaluated
// and thus the safest action is to clear focus here.
clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
clearParentsWantFocus();
} else if (!hasParentWantsFocus()) {
// original requestFocus was likely on this view directly, so just clear focus
clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
}
// otherwise, we let parents handle re-assigning focus during their layout passes.
} else if ((mPrivateFlags & PFLAG_WANTS_FOCUS) != 0) {
mPrivateFlags &= ~PFLAG_WANTS_FOCUS;
View focused = findFocus();
if (focused != null) {
// Try to restore focus as close as possible to our starting focus.
if (!restoreDefaultFocus() && !hasParentWantsFocus()) {
// Give up and clear focus once we've reached the top-most parent which wants
// focus.
focused.clearFocusInternal(null, /* propagate */ true, /* refocus */ false);
}
}
}
if ((mPrivateFlags3 & PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT) != 0) {
mPrivateFlags3 &= ~PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT;
notifyEnterOrExitForAutoFillIfNeeded(true);
}
notifyAppearedOrDisappearedForContentCaptureIfNeeded(true);
}
首先会通过setFrame方法来设定View的四个顶点的位置,即初始化mLeft、mRight、mTop和mBottom这四个值,View的四个顶点一旦确定,那么View在父容器中的位置也就确定了 。
接着会调用onLayout方法,这个方法的用途是父容器确定子元素的位置,,和onMeasure方法类似,onLayout的具体实现同样和具体的布局有关,所以View和ViewGroup均没有真正实现onLayout方法。
draw过程
Draw过程就比较简单了,它的作用是将View绘制到屏幕上面。
View的绘制过程遵循如下几步:
- 绘制背景background.draw(canvas)
- 绘制自己(onDraw)
- 绘制children(dispatchDraw)
- 绘制装饰(onDrawScrollBars)
public void draw(@NonNull Canvas canvas) {
final int privateFlags = mPrivateFlags;
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
* 7. If necessary, draw the default focus highlight
*/
// Step 1, draw the background, if needed
int saveCount;
drawBackground(canvas);
// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, draw the content
onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
drawAutofilledHighlight(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
// Step 7, draw the default focus highlight
drawDefaultFocusHighlight(canvas);
if (isShowingLayoutBounds()) {
debugDrawFocus(canvas);
}
// we're done...
return;
}
/*
* Here we do the full fledged routine...
* (this is an uncommon case where speed matters less,
* this is why we repeat some of the tests that have been
* done above)
*/
boolean drawTop = false;
boolean drawBottom = false;
boolean drawLeft = false;
boolean drawRight = false;
float topFadeStrength = 0.0f;
float bottomFadeStrength = 0.0f;
float leftFadeStrength = 0.0f;
float rightFadeStrength = 0.0f;
// Step 2, save the canvas' layers
int paddingLeft = mPaddingLeft;
final boolean offsetRequired = isPaddingOffsetRequired();
if (offsetRequired) {
paddingLeft += getLeftPaddingOffset();
}
int left = mScrollX + paddingLeft;
int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
int top = mScrollY + getFadeTop(offsetRequired);
int bottom = top + getFadeHeight(offsetRequired);
if (offsetRequired) {
right += getRightPaddingOffset();
bottom += getBottomPaddingOffset();
}
final ScrollabilityCache scrollabilityCache = mScrollCache;
final float fadeHeight = scrollabilityCache.fadingEdgeLength;
int length = (int) fadeHeight;
// clip the fade length if top and bottom fades overlap
// overlapping fades produce odd-looking artifacts
if (verticalEdges && (top + length > bottom - length)) {
length = (bottom - top) / 2;
}
// also clip horizontal fades if necessary
if (horizontalEdges && (left + length > right - length)) {
length = (right - left) / 2;
}
if (verticalEdges) {
topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
drawTop = topFadeStrength * fadeHeight > 1.0f;
bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
drawBottom = bottomFadeStrength * fadeHeight > 1.0f;
}
if (horizontalEdges) {
leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
drawLeft = leftFadeStrength * fadeHeight > 1.0f;
rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
drawRight = rightFadeStrength * fadeHeight > 1.0f;
}
saveCount = canvas.getSaveCount();
int topSaveCount = -1;
int bottomSaveCount = -1;
int leftSaveCount = -1;
int rightSaveCount = -1;
int solidColor = getSolidColor();
if (solidColor == 0) {
if (drawTop) {
topSaveCount = canvas.saveUnclippedLayer(left, top, right, top + length);
}
if (drawBottom) {
bottomSaveCount = canvas.saveUnclippedLayer(left, bottom - length, right, bottom);
}
if (drawLeft) {
leftSaveCount = canvas.saveUnclippedLayer(left, top, left + length, bottom);
}
if (drawRight) {
rightSaveCount = canvas.saveUnclippedLayer(right - length, top, right, bottom);
}
} else {
scrollabilityCache.setFadeColor(solidColor);
}
// Step 3, draw the content
onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
// Step 5, draw the fade effect and restore layers
final Paint p = scrollabilityCache.paint;
final Matrix matrix = scrollabilityCache.matrix;
final Shader fade = scrollabilityCache.shader;
// must be restored in the reverse order that they were saved
if (drawRight) {
matrix.setScale(1, fadeHeight * rightFadeStrength);
matrix.postRotate(90);
matrix.postTranslate(right, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
if (solidColor == 0) {
canvas.restoreUnclippedLayer(rightSaveCount, p);
} else {
canvas.drawRect(right - length, top, right, bottom, p);
}
}
if (drawLeft) {
matrix.setScale(1, fadeHeight * leftFadeStrength);
matrix.postRotate(-90);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
if (solidColor == 0) {
canvas.restoreUnclippedLayer(leftSaveCount, p);
} else {
canvas.drawRect(left, top, left + length, bottom, p);
}
}
if (drawBottom) {
matrix.setScale(1, fadeHeight * bottomFadeStrength);
matrix.postRotate(180);
matrix.postTranslate(left, bottom);
fade.setLocalMatrix(matrix);
p.setShader(fade);
if (solidColor == 0) {
canvas.restoreUnclippedLayer(bottomSaveCount, p);
} else {
canvas.drawRect(left, bottom - length, right, bottom, p);
}
}
if (drawTop) {
matrix.setScale(1, fadeHeight * topFadeStrength);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
if (solidColor == 0) {
canvas.restoreUnclippedLayer(topSaveCount, p);
} else {
canvas.drawRect(left, top, right, top + length, p);
}
}
canvas.restoreToCount(saveCount);
drawAutofilledHighlight(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
// Step 7, draw the default focus highlight
drawDefaultFocusHighlight(canvas);
if (isShowingLayoutBounds()) {
debugDrawFocus(canvas);
}
}
View绘制过程的传递是通过dispatchDraw来实现的,dispatchDraw会遍历调用所有子元素的draw方法,如此draw事件就一层层地传递了下去。
View有一个特殊的方法setWillNotDraw:
public void setWillNotDraw(boolean willNotDraw) {
setFlags(willNotDraw ? WILL_NOT_DRAW : 0, DRAW_MASK);
}
如果一个View不需要绘制任何内容,那么设置这个标记位为true以后,系统会进行相应的优化。
默认情况下,View没有启用这个优化标记位,但是ViewGroup会默认启用这个优化标记位。
已经到底啦!!