YOLOv11融合[ECCV2024]WTConvNeXt中的WTConv模块及相关改进思路
YOLOv11v10v8使用教程: YOLOv11入门到入土使用教程
YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总
《Wavelet Convolutions for Large Receptive Fields》
一、 模块介绍
论文链接:https://arxiv.org/pdf/2407.05848
代码链接:https://github.com/BGU-CS-VIL/WTConv
论文速览:
近年来,有人试图增加卷积神经网络 (CNN) 的内核大小,以模拟 Vision Transformers (ViTs) 自我注意力块的全局感受野。然而,这种方法在实现全局感受野之前很快就达到了上限和饱和的方式。在这项工作中,我们证明了通过利用小波变换 (WT),实际上可以获得非常大的感受野而不会受到过度参数化的影响,例如,对于 k × k 感受野,所提出的方法中可训练参数的数量仅随 k 呈对数增长。拟议的层名为 WTConv,可以用作现有架构中的直接替代品,产生有效的多频响应,并随着感受野的大小而优雅扩展。我们展示了 ConvNeXt 和 MobileNetV2 架构中 WTConv 层对图像分类的有效性,以及用于下游任务的主干,并展示了它产生额外的属性,例如对图像损坏的稳健性和对纹理形状的响应增加。
总结:文章提出WTConv,一种特征提取模块。
⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐
YOLOv11及自研模型更新汇总(含免费教程)文章浏览阅读366次,点赞3次,收藏4次。群文件2024/11/08日更新。,群文件2024/11/08日更新。_yolo11部署自己的数据集https://xy2668825911.blog.csdn.net/article/details/143633356
⭐⭐付费项目简介:融合上百种顶刊顶会模块的YOLO项目仅119(赠百种改进的v9),此外含自研模型与本文模块融合进行二创三创,最快1-2周完成小论文改进实验,代码每周更新(上周更新超20+二创模块),欢迎QQ:2668825911(或点击下方小卡片扫二维码)加我了解。⭐⭐
⭐⭐本项目并非简单的模块插入,平均每个文章对应4-6个二创或自研融合模块,有效果即可写论文或三创。本文项目使用ultralytics框架,兼容YOLOv3\5\6\8\9\10\world与RT-DETR。⭐⭐
已进群小伙伴可以先用下文二创及自研模块在自己的数据集上测试,有效果再进行模块结构分析或继续改进。
二、二创融合模块
2.1 相关二创模块及所需参数
该模块可如图加入到C2f、C3、C3K2与自研等模块中,代码见群文件,所需参数如下。
C2f-变式模块 所需参数:(c1, c2, n, shortcut, g, e)
C3-变式模块 所需参数:(c1, c2, n, shortcut, g, e)
C3k2-变式模块 所需参数:(c1, c2, n, c3k, e, g, shortcut)
RCRep2A及变式模块 所需参数:(c1, c2, shortcut, e)
2.2更改yaml文件 (以自研模型为例)
yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客
打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 377 layers, 2,249,525 parameters, 2,249,509 gradients, 8.7 GFLOPs/258 layers, 2,219,405 parameters, 0 gradients, 8.5 GFLOPs
s: [0.50, 0.50, 1024] # summary: 377 layers, 8,082,389 parameters, 8,082,373 gradients, 29.8 GFLOPs/258 layers, 7,972,885 parameters, 0 gradients, 29.2 GFLOPs
m: [0.50, 1.00, 512] # summary: 377 layers, 20,370,221 parameters, 20,370,205 gradients, 103.0 GFLOPs/258 layers, 20,153,773 parameters, 0 gradients, 101.2 GFLOPs
l: [1.00, 1.00, 512] # summary: 521 layers, 23,648,717 parameters, 23,648,701 gradients, 124.5 GFLOPs/330 layers, 23,226,989 parameters, 0 gradients, 121.2 GFLOPs
x: [1.00, 1.50, 512] # summary: 521 layers, 53,125,237 parameters, 53,125,221 gradients, 278.9 GFLOPs/330 layers, 52,191,589 parameters, 0 gradients, 272.1 GFLOPs
# n: [0.33, 0.25, 1024]
# s: [0.50, 0.50, 1024]
# m: [0.67, 0.75, 768]
# l: [1.00, 1.00, 512]
# x: [1.00, 1.25, 512]
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, RCRep2A_WTConv2d, [128, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 4, RCRep2A, [256, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 4, RCRep2A, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, RCRep2A, [1024, True]]
- [-1, 1, SPPF_WD, [1024, 7]] # 9
# YOLO11n head
head:
- [[3, 5, 7], 1, align_3In, [256, 1]] # 10
- [[4, 6, 9], 1, align_3In, [256, 1]] # 11
- [[-1, -2], 1, Concat, [1]] #12 cat
- [-1, 1, RepVGGBlocks, []] #13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]] #14
- [[-1, 4], 1, Concat, [1]] #15 cat
- [-1, 1, Conv, [256, 3]] # 16
- [13, 1, Conv, [512, 3]] #17
- [13, 1, Conv, [1024, 3, 2]] #18
- [[16, 17, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
2.3 修改train.py文件
创建Train脚本用于训练。
from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
if __name__ == '__main__':
model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1-ConvNeXt.yaml')
# model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
amp=True, mosaic=False, project='run/train', name='exp',)
在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。
YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客